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Preface

The reader may distinguish three principal themes in this volume.
There is the direct development of homological methods, interlocking
neatly with the Euler characteristic theory on one side, and finiteness
questions on the other. There is the theory of groups acting on trees,
including that of amalgamated free products and HNN groups, and also
the Stallings structure theorem. Finally, but at present still in a rudi-
mentary state, there is the technique of relation modules.

In contrast there is a need for examples, general enough to test
ideas, but explicit enough to make detailed calculations. Much the most
interesting at present are arithmetic and related groups; the study of these
was an auxiliary theme.

Thanks are due to the LMS for backing the conference, to the SRC
for money to run it, to David Johnson for much work on the organisation,
to the staff at Grey College for providing an agreeable background and,

of course, to the participants for their contributions.

C. T. C. Wall
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Introduction

There have been many instances of the use of topological ideas in
connexion with infinite group theory; the most obvious being, perhaps,
the cohomology of groups and the most spectacular, Stallings' theorem on
the structure of groups with infinitely many ends. Although the pioneering
papers were somewhat isolated from each other, there have been signs
in recent years that the techniques are being brought together into a new
branch of group theory. The object of the conference was to bring together
the main people active in this area, and these proceedings are intended to
give a general view of these developments.

The papers in this volume were invited from the participants in the
above symposium. Six main speakers presented surveys of different areas
in three or four lectures; written versions of these form the first five
items in the contents (the notes by Scott and Wall contain much of the
material from Stallings' lectures as well as that from mine). The other
items do not all correspond closely with talks given at the symposium and

in several cases present work done subsequently.
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1 - Traces and Euler characteristics

HYMAN BASS

Columbia University

Let A be a ring. Ishall write ®(A) for the category of finitely
generated projective right A-modules and Ko(A) for its Grothendieck
group. When A is an algebra over some commutative ring k let
(Bk(A) denote the category of right A-modules M such that M € ®(k),
the category of 'k representations' of A, and let Rk(A) denote its
Grothendieck group.

I shall be mainly concerned with ((A) in the case when A = kG,
the group algebra of a group G, and particularly the case when k = Z,
This is a subject that barely exists except for some very special classes
of groups G, notably finite groups and abelian groups. The following

questions indicate the level of our ignorance.

1. Let G be a torsion free group.

(i) Is every P € ®(ZG) free?

No in general but there is essentially only one example known [D],
Dunwoody's trefoil module. G = (x, y|x’ =y’) is the trefoil group, P
is a relation module arising from a presentation of G, and
P ® ZG = ZG @ ZG.

(i) Is KO(ZG) = Z?

No counterexamples are known.

I mention in passing the following classical problem, which turns
out to be related to the above questions in certain cases.

(iii) Is ZG without non trivial 0-divisors ?

(iv) (Serre [S]). Suppose that G is of type (FP), i.e. there is a

finite resolution
0P =>,..=>P =2Z=->0
n 0

with each Pi € ®(ZG). Is G then of type (FL)? I e. can one choose all
the Pi to be free?



2. Can one, for a reasonably extensive class of groups G,
describe KO(ZG) or at least KO(QG) in terms of the finite subgroups
of G?

A specific case: Let G = SLn(Z) with n= 3, If H is a finite
subgroup of G and if Q € ®(ZH), we can form the induced module
P = Indg(Q) € ®(ZG). My student David Carter has produced such
examples which are non free [C]. In fact he shows, for any odd prime p,
that KO(ZSLp(Z)) contains a subgroup of order b ; 1. However no one
has produced non free projective modules over torsion free subgroups of
SLn(Z). Modules obtained by induction from finite subgroups as above

always restrict to free modules over torsion free subgroups.

I propose to discuss here a rank invariant rP of projective modules
P € ®(A). There are essentially two ways of constructing such invariants:
- Make a base change A =B sothat P ®, B is B-free and count

A
a basis.
- Define rp = TP/A(IP) where TP/A is a 'trace function' on
EndA(P).

The first method is that used in commutative algebra, taking for B the
various localizations of A. It is sometimes used also for group algebras
A = kG, using the augmentation A =k,

The second method appears to make sense only over commutative
rings, since it is only then that one classically can define the trace of an
endomorphism. However Stallings and Hattori introduced a trace in the
general case and it is this trace that we shall use.

Conjecture (4. 5) below asserts, for any group G and P € ¢(ZG),
that rp =Tp for some free module F.

The final section 7 discusses various Euler characteristics con-
structed from such rank functions.

Much of this presentation is a resumé of results in [B].

1.  Hattori-Stallings traces (see [B], [H], [St1])

A denotes a ring; A-modules are understood to be right A-modules
and ((A) denotes the category of those which are finitely generated and

projective,



We write

T=T, :A>T@A)=A/A, A]

for the natural projection to the quotient of A by the additive group
[A, A] generated by all commutators [a, b] = ab - ba.

Let P be an A-module and P* = HomA(P, A), If xeP, acA,
f € P*, we have T(f(xa)) = T(f(x)a) = T(af(x)) = T((@af)(x)), whence an
additive map P ®, P*— T(A) sending x ® f to T(f(x)). On the other

A
hand we have a canonical homomorphism

P ®A P* *EndA(P), x® > xf:ybP xi(y),

which is an isomorphism if and only if P € ®(A). In this case we view
the latter as an identification and so obtain an additive map, called the
trace,

TP = TP/A : EndA(P) =+ T(A),

TP(x R f) = TA(f(x)) .

By a (finite) coordinate system in P, we mean a finite family
(xi, fi) in P X P* such that lP =7 X, ® fi’ in other words such that
x = %xifi(x) forall xeP. If ue EndA(P), then u(xi®fi)=u(xi)®fi,
so u = ul

p= Zu(xi) Q fi and

1
M) Tpl) = Ty tifute)

If (xi) happens to be a free basis of P then (fi) is the dual basis of P*,

uji = fj(u(xi)) defines the matrix of u relative to (xi), and formula (1)

reads: TP(u) = TA(Z uii)' This shows that when A is commutative and
i

P is free then TP is the usual trace. We define the rank of P to be

the element
(2) rP = rP/A = TP(IP) = TA(Zi fi(xi)) €eT@A).

For example



(3) rAn = TA(n)

An A-module M is said to be of type (FP) if there is a finite

resolution
(4) 0->Pn->... ->P0->M->O

for some n = 0 with each Pi € ®(A). An endomorphism u € EndA(M)
can then be lifted to an endomorphism (ui € EndA (Pi)) of the resolution
(4) and we put

6) Ty =2 (-1)iTPi(ui) :

This gives a well defined map

(6) : End, (M) = T(A)

TM

and we define the rank of M to be
_ _ i

(7 = TM(lM) = 21 (-1) Ip -

1

The above trace maps (6) enjoy the following properties (see [B], [H],
[St]).

(1.1) Additivity, Let M be an A-module, M' a submodule, and
M"=M/M' If twoof M', M, M" are of type (FP) so also is the third.
Suppose this is the case and that u € End A(M) leaves M' invariant and
induces u' €EndA(M') and u" €EndA(M"). Then

T . (u=T_, )+ TM,,(u") .

M( MI (

(When M =M'® M" this corresponds to the matrix formula

u' * — 1 "
TM(O u") - TM'(U ) + TMn(u ) ')

(1.2) Linearity, If u, v eEndA(M) then

TM(u +v) = TM(u) + TM(v) .



Further, if A is a k-algebra for some commutative ring k, then so

also is EndA(M), T(A) is naturally a k-module, and T,, is k-linear,

M
TM(ut) = TM(u)t

for t ek, Consequently r_,. is annihilated by annk(M).

M
u

(1.3) Commutativity., Let M2 M' be homomorphisms between
—_— ul

A-modules of type (FP). Then
A — 1
TM(u u) - TMv(uu )‘

(1. 4) Universality. Suppose Ti3 : EndA(P) =+ S is a collection of
maps (defined for P ¢ ®(A)) into an additive group S, which is additive,
linear, and commutative in the above sense. Then there is a unique group
homomorphism t: T(A) =+ S such that Ti: =to TP for all P e ®(A).
The same applies if we replace (*(A) by the category of all A-modules of

type (FP).

(1. 5) Functoriality; covariance. A ring homomorphism @ :A -+ B

induces an additive map

a,:T@A)>T(B),
T, @) Ty(a(@)) .

If Pe®A) and u € EndA(P) then we have o, P =P ®A B ¢ ¢(B) and

au=u ®A1B € EndB(a*P), and

Ta*P(a*u) = oz*TP(u) .

In particular r p = %lp If B is a flat left A-module (via «), then
L3
these formulae remain valid for all A-modules P of type (FP).
(1.6) Automorphisms. Suppose that @ is an automorphism of A,
For every A-module M we have the A-module M(a) with M as additive
group and scalar operation x.a = xa(a). Then M~ M(a), and

(@)

A-modules. The map xFPx® 1 is an A-isomorphism from M(a) to

ukFu = u for morphisms, is an automorphism of the category of



@,'M=M® _ A, matching u ¢ End, (M) = EndA(M("’)) with
o

a*-lu =u® 1, ¢ EndA(oz;lM). It follows therefore from (1. 5) that
a
if M is of type (FP) then

-1
TM(a)(u) =o' ().

In particular

-1

r =a,r

M(oz) M
(1.7) Contravariance, TrB/A' If a makes B a right A-module
of type (FP) then it does the same to all B-modules M of type (FP), so
i c
we can define TM/A(u) for ue EndB(M) EndA(M). The map
(M, u)+~ TM /A(u) is manifestly additive, linear, and commutative. By

universality, therefore, it is of the form

Tpra® =Trg Ty W)

for a unique homomorphism

Tr : T(B) = T(@A).

B/A

2. Characters

Let k be a commutative ring and let A be a k-algebra. If M is
an A-module and a € A, the endomorphism ay i X —xa of M is k-linear.
Let (Rk(A) denote the category of A-modules M which are finitely genera-

ted and projective as k-modules. If M ¢ (Rk(A) we have its character

xM:A—*k
akT

M) -

It is a k-linear map vanishing on [A, A], so we may also view Xy @S 2an
element of Homk(T(A), k).
The additive functor H : P~ HomA(P, M) sends @A) to ®(k).

If Pe®A) and u € EndA(P), we have TH(P)/k(H(u)) € k, which is clearly



additive, linear, and commutative in (P, u), whence a homomorphism
X : T(A) =k such that TH(P)/k(H(u)) = x(TP/A(u)). When P=A and
u(x) = ax we have an isomorphism (H(P).H(u)) = (M, aM), whence

X = Xpr Explicitly,

(2.1) Proposition, If M € (Rk(A), P e ®A), and u eEndA(P) then
HomA(P, M) € ®(k) and

THomA(P’ M) /k(HomA(u, M) = xp(Tp /A(u)).

In particular when u= 1P we have

rHomA(P, M) x = XmTp,a) -

(2. 2) Proposition. Suppose that A is a finitely generated pro-

jective k-module, Then every P € ®(A) is likewise and, if r

PA" TA(a),
we have

XP(b) = TA/k(La ° Rb) = TA/k(xHaxb) .

In fact let 2 fi : A =~k Dbe a finite k-coordinate system of A and
let x,, g. : P >A be a finite A-coordinate system of P. If x € P then
iE’jjxjaifi(gj(x)) = ijgj(x) =x, S0 xjai, figj : P=>k is a k-coordinate
system of P. Hence xP(b) = TP/k(bP) = iE_ figj(bP(xjai)) =
i,zj fi(gj(xjaib)) = %fi(aaib) (where a = E.gj(;{j)’ so rp = A(a)

= TA/k(xH axb).
3. Group algebras

Let A =KkG, the group algebra of a group G over a commutative

ring k. The k-module [A, A] is generated by the commutators
-1 -1
[s, t]=st-ts=sus ~ -u={[suy s "]

where s, t, ue G and u=+ts, Thus T(s) = T(t) in T(kG) if and only
if s and t are conjugate in G, We shall thus identify T(s) (or TG(S))

with the G-conjugacy class of s. These classes constitute a k-basis



T(G) of T(kG). If r € T(kG) we thus have

r= r(7) -7,
TeT(Q)

a notation that interprets r as a function

T(G) » k
TI roT
G

with finite support supp(r) = {7 € T(G) [r(T) #0]}. We shall sometimes
confuse r with the central function r ° T, writing r(s) for r(T(s)) if

s € G. For any function f on G we define T by T(s) = f(s™").

(3.1) Proposition (Hattori [H]). Let G be a finite group and let
P € ®(kG). Then

xp(®) = [Z5()] - rp(s™)

for s € G. For s =1 this gives

rp g = |Gl rp(0).
In fact let a= 2 as € kG be such that Ty = T(a). According to
seG
Proposition (2. 2) we have x(s) = T (x> axs) = 2 a, T (x ™ txs).
P Gk teg b KG/K

Now x> txs permutes the k-basis G of kG so its trace is the number

of x €G suchthat txs = x, i.e. suchthat t=xs 'x . This number is

0 if t¢T(s™'), and Zg ()| if teT(s™!). Thus

s)= 2 a, - |Z.6)|=r (s'l)- |z s)].
Xpt t€T(S-1) t G P G
(3.2) Corollary. If [G] is invertible in k.then rp,= T(a )
where a, = |G| D) xP(s )s an element of the center of kG.

seG
(3.3) Corollary. If k is an integral domain in which no prime

divisor of [Gl is invertible then 0 and 1 are the only idempotents in
kG,




If char(k) =p > 0 then G is a p-group so, if F is the field of
fractions of k, then FG is a local ring; whence the corollary.
Suppose p =0 andlet e # 0 be an idempotent in kG, Put P=ekG.
= = . n
Then rP/k xP(l) |G| rP(l), SO rP/k/[GI belongs to k N @ and
our hypothesis implies that it is an integer. But if ]G] divides rp p

and P is a direct summand of kG we must have P =kG, so e =1.

4, Subgroups of finite index
Let H be a subgroup of finite index in G, Then

kG= & skH,
seG/H

a free kH-module with basis a set of representatives of the cosets G/H.

Therefore we have a k-linear map (see (1. 7))

Tr = Tr T(kG) = T(kH)

kG /kH

defined by Tr(TG(a)) = TkG/kH(La :xPax) for a €ekG., If t € G then

Lt permutes the direct summands skH above, and tskH = skH if and

only if s 'ts € H, in which case Lt(s) =s- (s 'ts). Therefore

-1
1) Tr(T4t) = SeZG/H TH(s ts).
s ltseH

Let 7= TG(t). Then (1) shows that

2 Tr(n= 2 =z -0
o€eT(H)
oCT
where zZ, is the number of s € G/H such that s_lts eo, If s, has this
property then s does also if and only if s, € ZG(t)SoH’ 80 2z is the
number of H-cosets in the double coset Z G(t)sOH. This is the index in
1

ZG(t) of ZG(t) n SOHSO = ZsDHsal(t)’ SO

(3) 2, =[2406) 1 Zy(s)]

for any s = s-lts €0, Supposethat r= 3 r(7)7 € T(kG). Then
0 o
T€T(G)



Tr(r)= 2 r(1) 2 Z, 0= 2 r(s) - z 0. In other
T€T(Q) o€eT(H) o:TH(s)eT(H)
oCT
words, for s ¢ H we have

(4) Tr(r)(s) =r(s). [ZG(s) : ZH(s)] .

If M is a kG-module of type (FP), hence likewise as kH-module,
and if u € Ende(M), we have T (u) = Tr(T

u= lM we thus have from (4):

(u)). In case

M/kH M/kG

5 Ty ) =Ty 66 - [Zg06) 2 Zy(s)]
for s €e H. When s =1 this becomes

6) rM/H(l) = rM/G(l) . [G:H].

(4.1) Theorem. Let G be a finite group and let k be an integral

domain in which no prime divisor of |G| is invertible. Let P € ®(kG)

and let n denote the rank of the k-module P ®kG k. Then
(7) rp,= r(kG)n (= TkG(n)) .
Since n= )} r(7), the theorem is equivalent to the assertion

that TeT(G)

(8) rP(s)=O for s #1 in G.

Let s € G and put H=(s). Then rP/H(S) = rP/G(s). [ZG(s) : ZH(s)],
and the last factor is #0 in k, by assumption. Thus it suffices to prove

the theorem for the abelian group H. But then r lies in the subring

P/H
of kH generated by all idempotents. By Corollary (3. 3) above, this

subring is the prime subring, whence rP/H(s) =0 if s#1.

(4.2) Corollary (Swan). Let F be the field of fractions of k.

Then P &, F = Fe)".

If char(k) =p> 0 then G is a p-group, so FG is a local ring,

and P ®kF is FG-free. If p =0 then FG is semi-simple and it

suffices to show that Xp In view of Proposition (3, 1), this

= Xkan

10



follows from (4. 1).

(4.3) Corollary, Let k be a subring of € suchthat k nQ = Z.
Let G beagroupand P e ®(kG). If G is residually finite then

ro)= ¥ r (7 (=r ).
P reT(@) T ! PO, Gk/k

Let 7 : G=G' be the projection to a finite quotient chosen so that
if rP(s) #0 and s #1 then 7(s) # 1. Since supp(rP) is finite, such a
7 exists. Let P'=P® _kG' ¢ ®(kG'). By Theorem (4.1), rP,(s') =0

kG
for s'#1 in G'. Hence

0= 2 ro(M= 2 ryM= I ryn,
T e€T(G") P TeT(Q) P 7€T(G) P
T'#1 7(7)#1 T#1

the last equality using the specified property of 7.
Let k be a subring of € suchthat kN Q =%. Let G be any
group. Let P e ®(kG).

(4.4) Weak Conjecture, r_(1)= 2 r (7) (=r
P 7€T(G) P P®ka/k
Corollary (4. 3) above affirms this when G is residually finite.

).

(4.5) Strong Conjecture. rP(s) =0 forall s#1 in G, i.e,.

Tp = Ten where n = rP®ka/k'

We shall prove this below when G is a torsion free linear group

(Corollary 6.4). It remains unproved for G = SLn(Z).

5. Characteristic p: Frobenius

Let k be a commutative ring of prime characteristic p and let
A be a k-algebra. Then T(A) =A/[A, A] is the commutator quotient

of the restricted Lie algebra of A, so it inherits a pth power map

F:T@) = T@)P det T(aP)

which is a Frobenius semi-linear endomorphism of T(A):

11



t+t)P =tP+tP

( cvt)p = PP

for t, t' € T(A) and o ek. If M is an A-module of type (FP) we can
apply the same considerations to End A(M) to conclude that

Ty (0F) = T, P

I(One applies universality to the map (M, u)+ TM(up), which is additive,
linear, and commutative, to show that TM(up) = ¢(TM(u)) for some endo-
morphism ¢ of T(A). Taking M = A one sees that ¢(t) = tP, )

Suppose now that A is a group algebra kG. Then

m m
FYC 3 rn= 3 rP *

T€T(G) T€T(G)
m
= 3 (3P )
0e€T(G) m
Tp =0

m m
where T(s)p =T(sp ) for s €G.

m
Remark, Suppose s € G and T(s)p = T(s), i.e. s is conjugate
m
p If s has finite order n then n is prime to p clearly.
m

= (tst™H)P

in G to s
Moy

Suppose that s has infinite order and say s = ts? t

m

If a(x)=txt"} for x ¢G then a"(s)’ =" Y(s), so
H={(s, afs), ..., ozr(s), ..., is a subgroup of G isomorphic to
z[].
p

(5.1) Proposition. Suppose that r =} r(7)7 € T(kG) is fixed by
F™. Put S=supp(r) = {7|r(7)# 0} andlet R denote the subring of k

generated Ly all r(7).

m m
(a) F permutes S and I‘(Tp )=r(7’)p for 7 €S. Moreover

m
r(? =rq.
(b) If s €G and r(s) #0 then s is conjugate in G to s

mn

P for

some n = ISI

(¢) R is a finite product of finite fields, and [R:F ]= p™ Isl,

12



m m
If 0e8 then r(o)= J r(nP , 80 0= ™ for at least one
m

P =0
7 € S. The consequent inclusion S C F™S of finite sets implies that F
induces a bijection from S to S, whence (a) and (b). Let N, eee, 0y
denote the cardinals of the orbits in S of Fm; choose s in the orbit

of size n, and put ri=r(Ti). Then r , ..., r generate R and

mn,
ry = r.. Thus R is a quotient of the tensor product of the rings /,/:T:?T\
mnj 4;_3/
F[X]/(xP -X)# I F 4, so R is semi-simple and of F ﬁ[f{
P d'mn. p |
mn, m(n. +...+n )
dimension =Ilp '=p u zpm[sl_

1
(5.2) Coroliary. If P isa kG-module of type (FP) then rp =rp
so the conclusions above apply, with m =1, to r = I'pe

(5.3) Corollary. If k is an algebraically closed field and if Pe®(kG)
then there is a finite field k' Ck and a P' € ®(k'G) such that rp=rIp.

It suffices to prove this instead for the algebraic closure k' of
IF'p in k. Then there is a finitely generated k'-algebra R in k so that
P comes by base change from some Q € ®(RG), whence rp = rQ.
Choose a retraction o : R=k' andput P' =Q ®R k' € ®(k'G). Then
rP,(s) = oer(s) = rQ(s) because, by Proposition (5. 1), rQ(s) € k' for
all s €G.

6. The complex group algebra

(6.1) Theorem. Let G be a group. Let r= r(7)7T be
T7€T(G)
the rank of a CG-module of type (FP). Put S = supp(r),

r(G) = {r(1)|7 € T(G)}, and E = Q(r(G)), the subfield of C generated
by r(G).
(a) E is a firite abelian extension of @ Put T = gal(E/Q).

There is a finite set II of rational primes, including those that ramify

in E, with the following properties.
(b) If pgIl then 7+ P is a permutation of S and for 7 €8S
we have r(7) = or(7), where o= (p, E /Q), the Artin symbol.
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Let s € G be such that T(s) € S (i.e. r(s) # 0).
— - n
P" for some n= |S|

(¢) If pgIl then s is conjugate in G to s
e27ii/m

(d) Suppose that s has finite order m and put w =
Then s € Q(w), say s = f(w) with f(X) € QX]. Forall q prime to m
we have r(sq) = f(wq). In particular r(l) € @ (Zalesskii [Z]).

() If s has infinite order then s belongs to a subgroup of G

isomorphic to the semi-localization of Z at II.

(f)  If (every finitely generated subgroup of) G has a faithful

linear representation over some field then r(s) = 0 whenever s has

infinite order.

We can write r = T'p-Tp for some P, P' e ®(CG). We claim
there is a subring B of C with the following properties.

(1) B is finitely generated as a Z-algebra.

(2) P, P' are isomorphic to Q ®B C and Q' ®B C respectively,
for some Q, Q' € ®(BG).

(3) (1) r(r)#0 = r(r) e B

(ii) r(7) -r(1") # 0= r(7) - r(1") € Bx.

(4) B is integrally closed.

(5) If Q is the algebraic closure of ® in C and B =B ngQ,
then the field of fractions of B1 is a Galois extension of @ and B1 is
invariant under the Galois group.

Condition (2) is easily achieved with a finitely generated subring of
C; condition (3) requires only inversion of finitely many elements; then
taking integral closure, to secure (4), preserves (1) because finitely
generated Z-algebras are excellent rings (cf. Matsumura [M]).

It suffices therefore to show that if we have B satisfying conditions
(1), (2) and (3), then we can enlarge B to achieve (5) without jeopardizing
(1). Let F denote the field of fractions of B andlet L'=F n Q. Since
F is a finitely generated extension of @, soalso is L', which is therefore
finite over Q. Extend L' to a finite Galois extension L of @ and let
L - F denote the compositum of L. and F in C. Since L' is algebrai-
cally closed in F, the field F is a regular extension of L', so L®L,F
is a field, hence isomorphic to L - F. It follows that L is the algebraic
closure of @ in L+ F, i.e. L=L-FnQ

14



Adjoining the ring of algebraic integers of L. to B, we preserve
(1) and reduce to the case where L =L'=F n® is Galois over @ and
is the field of fractions of B' = B n L. By generic freeness we may
invert some element of B' to make B/B' a free B'-module. Then if
we enlarge B' to a localization B'S which is invariant under gal(L/Q),
the ring BS will satisfy BS nQ = B'S and so all the conditions of (5),
as well as (1), and then its integral closure will satisfy (1)-(5).

Condition (1) implies that the ring A = Z[r(G)] is contained in B.
To the rings Z C A C B we now apply the generic freeness lemma of
Hochster-Roberts [H-R]:

(6) There is an integer u # 0 such that Au and Bu/Au are free
modules over Zu = Z[Tll]' Let p be a prime integer. For any Z-module
M put M= M/pM. The natural map M = Mu = Mu/pMu is bijective
under the condition

(7 pfu,
in which case we view it as an identification.

Assume (7). Since Au is a direct summand of Bu (by (6)), the

same is true of Ku in Eu’ soalso of A in B.
—_—— B

— B Q € ®(BG) rQ:G—+-B

The composite T : G+ B =B is 5" g where Q, Q' ¢ ®(BG), and

it is fixed by Frobenius. Moreover A =Z[r(G)] = JFp[f'(G)]. Further
condition (2)(i) implies that supp(r) = supp(r) = S. It follows therefore

Q € P(BG) r.:G—B

Q r
T

> e— >

from Proposition (5. 1) that
8 7T+ P isa permutation of S
@ (™) =r(n)P modpA for TeS
(10) A is a finite product of finite fields.
These conditions are consequences of (7).
Since A = Ku and A isa free Z -module, we conclude that

A ]Fp] =[A,: 7u] =[A,: Zu] =[E : Q], where E = Q(r(G)) is the field
of fractions of A. Since there exist primes p satisfying (7), we conclude

that:
15



(11) E is a finite extension of Q.

Let E' be the least Galois extension of @ containing E and put
I =gal(E'/Q). It follows from condition (5) that

(12) E' is the field of fractions of B'=BnE' and B' is I
invariant.

Fix attention on some o eI, If & isa prime of E' unramified
over @ and lying over the rational prime p = pQ, then we have the
Frobenius element (2, E'/Q) ¢ I'. We have o= (9, E'/Q) if and only if

(13) ox) = %P mod 9 for all 2-integral x € E'.

Let HU denote the set of primes 2 of E' unramified over @ such that
o= (9, E'/Q) and such that pQ ,l/ u (condition (7)). It follows then from
(5) and (6) that B' = B NnE' consists of 2-integral elements, so we may
identify each ¢ € IIU with a maximal ideal of B'. It follows from the
Cebotarev Density Theorem that

(14) 1 is infinite.

Let 7e€8S, Let & EHU and p =p52. Then since r(7) e A C B' it
follows from (13) that

(15) or(7) = r(1P mod 9.

Combining (15) with (9) (which is available because p ,l/ u, by definition of
HU) we obtain

(16) or(7) = I‘(Tp) mod 9.

(We use the obvious fact that pA C @.) Now as 9 varies over the infinite
set IIG, we see infinitely many p = ph62 as well, whereas, by (8), »
varies over the finite set S. Therefore there is a T € S such that

T = Tp, where p = pQ, for infinitely many primes & € HO. Then (16)
implies that or(7) - r(Tl) belongs to infinitely many primes £ € HG,
whence or(7) = r(Tl). If wenowvary 7 €S and ¢ € I' we conclude that:

(17) T permutes r(G), hence E = Q(r(G)) is a Galois extension
of Q (i.e. E=E").

Returning now to the discussion above, but now armed with (17), we con-
clude from (2)(ii) that the congruence (16) is even an equality: -

(18) or(r) =r() if 9 €ll_and p= Py
Combining (18) with (9) we obtain the congruence

(19) or(7) = r(T)p mod pA, if 9 € Hc and p =p, whence

(19" o) = xP mod PA, if x €A, 9 € Hcr and p : p%.

16



If we avoid the finite set of primes p which figure in the conductor of the
integral closure of A over A, then (19') implies that o= (2, E/Q),
whereas it is a condition depending only on p = pQ; whence o= (£', E/Q)
for every prime 2' lying over p. But varying %' over the primes above
a given p varies (&', E/Q) over a conjugacy class of I'. It follows
therefore that o coincides with its conjugates in I, Since 0 was an
arbitrary element of I, we conclude the following:
Let TI denote the set of rational primes which divide u or ramify in E.

(20) T is abelian. If p is a prime not in II then, for 7 €8,
r(Tp) = or(7) where o= (p, E/Q) € I' is the Artin symbol. By the
theorem of Kronecker-Weber, E is contained in a cyclotomic field.

Let s € G and suppose that r(s) # 0.

Suppose first that s has finite order m. Let p be a prime not
dividing u and unramified in E, and put 0= (p, E/Q). Then
or(s) = r(sp), so o fixes r(s) if p=1 modm. It follows that r(s) eQ(w)
where w = e2ﬂi/m. Writing r(s) = f(w) with £(X) € Q[X], we have
or(s) = f(w"), whence r(sP) = f(wP). It follows from this that
r(sq) = f(wq) for all integers q prime to m,

Suppose that s has infinite order. From (8) we see that for any
prime p ¢ 11 there is an integer n = ISI such that s is conjugate in

n
G to sP , henceto sP where N=|S|! It follows that s is conjugate

N

4 for any integer q not divisible by any primes in II. It is

in G to s
then easy to embed s in a subgroup of G isomorphic to the additive sub-
group of @ consisting of elements with denominators not divisible by
primes in IL

Note finally that the modules P, P' € ®(CG) in the theorem arise
by base change from modules V, V' ¢ ®(CH) where H is some finitely
generated subgroup of G, andso r = I'p - Tp is the image of
T, =ry - Iy under T(CH) = T(CG). Then S = supp(r) consists of
conjugacy classes in G which meet some conjugacy class of H in
supp(rl). If r vanishes on elements of infinite order, the same is
therefore true of r.

Combining the observations above we conclude that

17



(6.2) Proposition, r(s) = 0 whenever s has infinite order,

provided that G satisfies the following condition:

(D) An element s € G has finite order if, for some finitely

generated subgroup H containing s, and some integer N=1, s is
N
b

conjugate in H to s for all but finitely many primes p.
Of course (D) holds if the following condition (D') holds.
(D') An element s € G has finite order if, in some finitely

generated subgroup H containing s, s isa pth power for infinitely many

primes p.

(6. 3) Theorem, Linear groups satisfy (D'), hence also (D).

(6.4) Corollary. Let G be a torsion free linear group. Let
P ¢ ®(CG). Then rP(s) =0 forall s#1.

Corollary (6. 4) establishes the Strong Conjecture (4. 5) for torsion
free linear groups, even with C in place of Z. However it is not clear
how to handle linear groups with torsion, even groups like G = SLn(Z’).
Here is an approach that makes some reduction in the problem,

Let P € ®(ZG), r = o and s € G be such that r(s) # 0. We know
from Proposition (6. 2) and Theorem (6. 3) that s has finite order, and the
Strong Conjecture asserts that s = 1. Choose a normal torsion free sub-
group N of finite index in G, for example a principal congruence sub-
group. Then, as in the proof of Theorem (4, 1), we can replace G by the
semi-direct product H= N+ (s). Consider S = supp(r) C T(H). By
shrinking N to a smaller subgroup N1’ we can try to make as many
elements of S (other than TH(s)) as possible escape from H, =N, (s).
Then choosing another normal subgroup N2 c N1 of finite index and

'sufficiently small', we can hope to distinguish TH (s) from the other

1
elements of supp(r) in H, /N2 = (Nl /Nz) + {s). If this is accomplished

we could conclude from Theorem (4. 1) applied to the latter finite group,
that r(s)=0 if s #1.

Theorem (6. 3) asserts explicitly: Let F be a field and let G be a
finitely generated subgroup of GLn(F). Let s € G and suppose that, for
infinitely many primes p, there is an x € G such that x =s. Then s

18



has finite order.

To prove this note first that there is a finitely generated subring
A of F suchthat G CGLn(A). It suffices to prove the above assertion
with G replaced by GLn(A), so suppose that G = GLn(A). After enlar-
ging A slightly (i. e. by a finite integral extension) we may further
assume that:

(i) the set spec(s) of eigenvalues of s is contained in A; and

(ii) A is integrally closed in its field of fractions, which we may
take to be F.

Let F be an algebraic closure of F. The following lemma uses

only that F is a finitely generated extension of its prime field.

(6.5) Lemma. ([B], Propositions (A.3)and (A.4).) There is an
integer N> 0 suchthatif o ¢ F and [F(a):F]=n then:

(@) aN =1 if o isa root of unity;

(o) o eF if o™ ¢ F for some m prime to N,

Let a e spec(s) CA. If s = xP with p primeand X € GLn(A)
then a = aP for some a € spec(x) and [F(a):F]=n (a being a root
of the characteristic polynomial of x). If p j’N (N as in the lemma) we
then have a ¢ F, whence « €A™ since o and ot are integral over
A, Thus a € A>< isa pth power in A>< for infinitely many primes p.
But AX is a finitely generated abelian group ([L], II, §4, Corollary of
Theorem 5), so a must have finite order. It follows that some power
u=s? of s hasall eigenvalues equalto 1, If s = xP then u= (xq)p,
s0 u inherits the hypothesis made on s.

It suffices to show that the unipotent u has finite order. Suppose
p is prime and u= xP with x € GLn(A). Then the eigenvalues of x are
pth roots of unity of degree =n over F. Lemma (6.5) (part (a)) thus
implies that x is unipotent if p }/N. If char(F) > 0, then unipotents
have finite order and we are done. So assume that char(F) = 0. Then
exp and log give inverse bijections between the unipotent elements in
GLn(F) and the nilpotent elements in Mn(F). If x is unipotent and
x” = u we therefore have x = exp(l log(u)). Let u=1+v. L =1log(u) =

v v 1y t°L° t"L"
n n!

v-—2—+13-—... + (-1) and E(t):exp(tL)=1+tL+-—2T+...+
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This is a polynomial in t with matrix coefficients in M (B) where

B= A[ ]. We have u=E(1l) and we know that E(—) €GL (A) for
1nf1n1te1y many primes p. The next lemma shows that E(t) is a constant,
so u=E(1) =E(0) = 1.

(6.6) Lemma. Let B be a finitely generated subring of a field
F of characterlstlc 0. Let f(t) = b + b t+... + b t b #0, bea
polynomial in B[t] such that f(—) € B for 1nf1n1tely many primes p.

Then f is a constant.

Let C bea ﬁnitely generated integrally closed subring of F con-
taining B and b for all b # 0. All but f1n1tely many primes p are
not invertible in C Choose one such that f(I_J) €C andlet v bea
discrete valuation of C such that v(p) > 0. Then

1 bl bn
= V(f(I_J)) = v(b0 + > +... + —n) = -nv(p)
P
because V(bi) =0 for all bi # 0, and bn + 0.

We close this section with a very pretty application of the above and

other K-theoretic results.

(6. 7) Theorem (Farkas-Snider [F-S]). Let G be a virtually poly-

cyclic group. If G is torsion free then €G has no zero divisors.

Let H be a polyinfinite cyclic normal subgroup of finite index in G.
Then A =CH is obtained from C by a finite succession of twisted
Laurent polynomial extensions, so it has the following properties (see
[F-H]).

(1) A is a (left and right) noetherian ring without zero divisors.

(2) A has finite global dimension,

(3) KU(A) is infinite cyclic, generated by [A].
The ring B = CG is a finitely generated (left and right) A-module, In fact

(4) B is a (left and right) noetherian prime ring (see [P]).
Since G has finite virtual cohomological dimension and G is torsion free
it follows from a theorem of Serre [S] that G has finite cohomological
dimension, whence

(5) B has finite global dimension.
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Since G and H clearly satisfy condition (D), and are torsion free, we
can, by Proposition (6. 2), identify the rank with a homomorphism from
K0 of the group algebra to Z, taking the value 1 on the class of the
ring itself. Now we have a commutative diagram (since rP/H(l) =
[G: H]rP/G(l) for P ¢ ®(CQ))

zZ —_— z G H 4
D d |
K, @ «———— K (&) +———K_(B)
= Res

where Q is the division ring of fractions of A. It follows that if M is
any finitely generated B-module, hence automatically of type (FP), then
M ®A Q 1is a Q-vector space of dimension divisible by [G : H] =

dimQ(B ®A Q). This implies that B cannot contain a direct sum of two
non zero submodules. From (4) it follows that B has a full ring of
fractions of the form F = Mn(D), where D is a divisionring., If n= 2
there is an idempotent e # 0 or 1 in F, Then (BnFe)®(BnF(1-e))CB

violates the conclusion drawn above, whence the theorem.

7. Euler characteristics
We summarise here some results from [B], §10.

(7.1) Notation. Let k be a commutative ring and let G be a group
Let r : T(G) =k be a function with finite support. As usual we write
r(s) =r(T(s)) for s € G. Define T : T(G) =k and J(r) ek by:

— -1
(1) r(s)=r(s "), Z(r)= 2 r(7.
TeT(G) v
If M e(Rk(kG) has character XM then Xy = va, where M =Hom(M,k
is the contragredient module. If P € ®(kG) then

(2) M®P, Hom (M, P) e ®(kG) and

®) Tme p=Xm T

(4) rHomk(M,P) =Xpm Ty
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For r € T(kG) as above 2 (r) is the image of r' under the map
T(kG) = T(k) =k induced by the augmentation kG = k. In particular

(5) E(rP) = rP@ka e

(7.2) Euler characteristics. We say that G is of type (FP)
over k if k is a kG-module of type (FP), i.e, if there is an exact

sequence
6) 0-P —>...>P —>k=0
with each Pi € ®(kG). We then call
_ WIS T
) xG—rk/kG—Zi( 1)rPi.G->k
the complete Euler characteristic of G over k. Chiswell [Ch]and the

author introduced the Euler characteristic

®)  x(@) = x5 €k,
and Ken Brown introduced a homological Euler characteristic which, in

the present case, can be described as

@ 2Z(x)= 2 Xa.
G rer) @
If ¢ :k—=Kk' is a homomorphism of commutative rings then G is

of type (FP) over k' and ¢ ° XG is its complete Euler characteristic

over k'.

(7. 3) Finite groups. A finite group G is of type (FP) over k if
and only if IGI € kx. In this case Proposition (3. 1) implies that

(10) xg6) = 1/|zG(s)! for all s € G. For s =1 this yields
X(G) = l/le. Further E(XG) =1,

(7.4) Homology. Suppose that G is of type (FP) over k. Let
M e O%k(kG). Then the sequence M ®k(6) of kG-modules is exact, showing
(2) that M is of type (FP) over k and (3) that

Suppose that, for all i, H, (G M) (respectively, H (G M)) is of type (FP)

over k; denote its k-rank h, (M) (respectively, h (M)) Then
(12) Z(rM/kG) = % (- 1) Ih, ;(M), respectively

13 3, ) =3nhw.
M /&G i
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When M =k we write these formulae as
(14) Z(xg) =2 (-1'n, =3 (-D'n.
i i
This formula identifies Z(XG) with the Euler characteristic of Ken

Brown and explains the terminology 'homological Euler characteristic'.

(7.5) Finite index. Let H be a subgroup of finite index in G,
Suppose that G is of type (FP) over k. Then H is likewise, and
(15) xH(s) = xG(s) . [ZG(s) : ZH(s)] for s ¢ H.
When s =1:
(16) x(®) = x(G) - [G : H].
Ken Brown has shown, when k = Z, that
a7 Dlxg) =2(xg)" [G: H,
though this may fail for general k.

(7.6) Conjectures. Let G be of type (FP) over k.

Case k = 7.
(18) Strong Conjecture (4.5)= xG(s) =0 forall s+#1 in G.
(19) Weak Conjecture (4.4) = x(G) = 2 (X ).

Case k = Q. We conjecture that:

XG

(20) xg(s) =0 it s has infinite order.

(21) G has only finitely many conjugacy classes of elements of
finite order. Serre conjectures that

(22) xG(s) = x(ZG(s)) if s has finite order, assuming that
Z G(s) is of type (FP) over k. This has been proved in many interesting

cases by Ken Brown., For finite G it is affirmed in (7. 3) above,

(7.7) Normal subgroups of type (FP). Let € : H“ G be the
inclusion of a normal subgroup of type (FP) andlet 7: G- G'=G/H

be the natural projection. We have (using (1. 6))
(23) xH(t) = xH(at) for all o € Aut(H), t €H,
so that the finite set supp(xH) C T(H) is Aut(H)-invariant. From (23)
it follows that
(24) xylsts™h) = Xg(®) forall s €G, t ¢H.
For t €e H put
(25) n = [G:H- ZG(t)] = the number of H-conjugacy classes con-

23



tained in TG(t). Then:
(26) n,
(27) n, < o= e*xH(t) =n, - xH(t).

Thus (when t=1)

(28) e*xH(l) = x(H) and

(29) 2(exy) = Zxy)-

Since k is a kH-module of type (FP) it follows, since kG is a
free kKH-module, that kG' =k ®kaG is a kG-module of type (FP),
Consequently (see (1.7)) 7 :kG—=+kG' induces a k-linear map
7* : T(kG') = T(kG). Moreover

(30) TI*TG,(].) = €4 Xy

= o= xH(t) =0 and e*xH(t) =0,

(7.8) Theorem. ([B]and [St2].) Let 7' € T(G'). Then 7*(7') is

a linear combination of classes 7 € T(G) such that 7(7) = 7'. Hence

there is an element L(7') €k such that

(31) m 7*(7') = L(7")T" and

(32) L) = Z(xp)
If the k-modules Hi(H’ k) are of type (FP) (e.g. if k is a fieldor a
P.L.D.)then L :s'P L(s'"') is the virtual character of the natural

action (via conjugation) of G' on H_(H, k).

(7.9) Suppose that G' acts trivially on H_(H, k). This happens,
for example, if G=H - ZG(H). Then L(s') =L(1) = Z(XH) for all
s' €G', so

(33) mm*(r') = Z(XH) - r' for all r' e T(kG").

(7.10) Suppose that G' is of type (FP) over k. Then G is like-
wise, and
69 xg=m0g) = T X,
If s e€G and 7s =s' € 7' € T(G') then it follows from (34) and (7. 8) that
(33) xg(8) = Xg(s) * (7 *7)(s).
When s € H it follows from (35) and (30) that

0 if n =
(36) xgle) = °

X(G") - XH(S) * n, otherwise
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where ng is as in (25)., For s =1 this yields the extension formula
(37) x(G) = x(G")x(H).
From (31) and (34) we further conclude that
(38) 7m,(xg) =L " Xg~

Explicitly, for 7' €T(G'),

G9) 2 'xG(T) = L(T)x g (™)
TT=T
Hence, for 7' =1, we obtain, using (32),

(40) 2 (1) = 2(Xyy) * x(G") and
TeT(G) ‘G o
TCH

(A1) Ixg)= I LMxgm.
T'G‘T(G')
When, further, G' acts trivially on H,(H, k) as in (7.9), then
(38) becomes
(42) W*(XG) = E(XH) * Xgi» Wwhence
(43) 2(xg) =Zxg) * 2{xgn-

(7.11) Suppose that xG,(s') =0 forall s'"#1 in G' (e.g. that G'
satisfies the Strong Conjecture (4. 5) over k). Then (34) becomes, in view
of (30) and (36),

(44) Xg = x(G") - .y Xgr
Explicitly, for s € H,

(45) XG(s) = x(G") - )(H(s)ns with n_ as in (25),
and both sides of (45) vanish if n, = ©, For s ¢H, XG(S) = 0. Further
(43) is valid in this case. Applying ., to (44) we conclude from (38) that
Te(xg) = X(G)x(H) * T, (D).

(7.12) Suppose that G' is finite and that k is an integral domain
of characteristic zero in which no prime divisor of fG’ | is invertible.
Suppose that G is of type (FP) over k. Then

(46 m(xg) = Clxgp/IG' D - Tg,(1) and

(47) L =3(xg) - P

where p = XkG' is the character of the regular representation of G’

over k.
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2 - Groups of virtually finite dimension

KENNETH S. BROWN
Cornell University

The purpose of this paper is to give an exposition of two topics in
the theory of groups of finite virtual cohomological dimension: (a) the
theory of Euler characteristics and (b) the recently developed Farrell
cohomology theory. These are treated in Parts II and III, respectively.
Part I is devoted to a review of the necessary background material.
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PART I. REVIEW

Good references for the material of Part I are [5] and [30].

§1. Finiteness conditions

Recall that the homology and cohomology of a group I' can be define
algebraically, in terms of projective resolutions, as follows. Regard Z
as a module (with trivial I'-action) over the integral group ring ZI', and

choose a projective resolution P = (Pi)iEO:
. =>P =P =Z->0.
1 0
One then defines, for any I'-module M,
H (T, M)=H,(P ®ZI‘M) and H*(T', M) = H*(Homz,r,(P, M)).

[Note: We have been sloppy here about the distinction between left modules
and right modules. To avoid ambiguity, let us agree that all modules in
this paper are to be understood as left modules unless the contrary is
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explicitly stated. But then in order to make sense out of the tensor
product above, one must convert P to a complex of right modules in
the usual way, by setting xy =y 'x for x € P, ve€ . ]

Alternatively, the homology and cohomology groups H(I', M) can
be defined topologically, in terms of Eilenberg-MacLane complexes. One
chooses an Eilenberg-MacLane complex of type K(I', 1), i.e., a con-
nected CW-complex Y such that 711Y =T and niY =0 for i> 1, and

one sets
H(F’ M) = H(Y’ M)’

where the groups on the right are to be interpreted as homology and co-
homology groups with local coefficients. [The equivalence of the algebraic
and topological definitions follows from the fact that the universal cover

Y of Y is contractible, so that its chain complex C(SNE) provides a free

resolution of Z over ZT. |

(1.1) Example. Suppose I' is a discrete subgroup of a Lie group
G which has only finitely many connected components. Let K be a
maximal compact subgroup of G and let X be the homogeneous space
G/K. One knows that X is diffeomorphic to Euclidean space le
(d =dim G - dim K) and that IT" acts properly on X (i.e., every point
x € X has a neighbourhood U such that (U n U # ¢ for only finitely
many vy €I'). In particular, every isotropy group I‘X is finite. If we
now assume that I'" is torsion-free, then these isotropy groups are
trivial, so that I acts freely on X and the projection X = TI'\X is a
covering map. Since X is contractible, it follows that the manifold
I'\X is a K(T', 1), hence

H(T, M)~ H(T'\X, M).

In the definitions of H(I, M) above, one is free to choose the
resolution P or the Eilenberg-MacLane complex Y. It is therefore
natural to try to take them to be as 'small' as possible, and this leads to
various finiteness notions. For example, if we interpret 'small’ in terms

of dimension, then we arrive at the notion of cohomological dimension:
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one says that I" has finite cohomological dimension if the following con-

ditions, which are known to be equivalent, are satisfied:
(1) 7% admits a projective resolution over ZI' of finite length,

i. e. a resolution of the form
=P =>..,..=P =Z=>0.
n 0

(Such a resolution is said to have length =<n,)

(i) Z admits a free resolution over ZI' of finite length.

(iii) There is an integer n such that Hi(l", M)=0 for i> n
and all I'-modules M.

(iv) There exists a finite dimensional K(I', 1)-complex.

If these conditions are satisfied then we define the cohomological
dimension of I" (denoted cd I') to be the minimal length of a projective
resolution of Z over ZI'; otherwise we set ¢d I' = =, It is known that
cd I is also equal to the minimal length of a free resolution of Z over
ZT, as well as to the smallest integer n satisfying (iii). If e¢d T #2
then c¢d I' can also be described topologically, as the minimal dimension
of a K(I', 1)-complex, but it is not known whether this is true if c¢d I' = 2;
in this case one knows only that there exists a K(I', 1) of dimension =3,

The torsion-free discrete subgroups of Lie groups as in 1.1 provide
examples of groups of finite cohomological dimension., On the other hand,
any group with torsion has infinite cohomological dimension., (In case T
is a non-trivial finite cyclic group, this is proved by a direct calculation
of H*(T'), which is non-trivial in arbitrarily high dimensions; the general
case follows from the elementary fact that ¢d I'" = c¢d I' whenever I''CT.

Further finiteness conditions are obtained by requiring not only that
the projective resolution P be of finite length, but also that each module
Pi be finitely generated. Such a resolution is said to be finite, and we
will say that T' is of type (FP) (resp. (FL)) if Z admits a finite pro-
jective (resp. free) resolution over ZI'. Unlike the situation in the
definition of ¢d I" above, where we allowed infinitely generated modules,
there is no reason to expect that a group of type (FP) is necessarily of
type (FL). Nevertheless, the surprising fact is that there are no known
examples of groups of type (FP) which are not of type (FL). Indeed,
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such a group would necessarily have a non-trivial projective class group
I~{0(ZF), ar~1d there are no known examples of torsion-free groups I
such that KU(Z’I") # 0. In spite of this lack of examples, however, we
will seebelow (cf. 5.4) that the theory of groups of type (FP) has con-
crete applications.

The (FP) and (FL) conditions have reasonable topological inter-
pretations, at least if we assume that I' is finitely presented: If I is
finitely presented then I' is of type (FL) if and only if there exists a
K(I', 1) which is a finite CW-complex, and T' is of type (FP) if and

only if some (and hence every) K(I', 1) is finitely dominated, i.e. is a

retract, in the homotopy category, of a finite complex. [Note: It is not
known whether the (FP) (or (FL)) condition implies that I' is finitely
presented; if so, then the finite presentation assumption above can be
dropped. ]

For example, if IT" is a torsion-free subgroup of a Lie group G
as in 1,1, and if T' is co-compact (i.e. G/I is compact), then T is
of type (FL), More interestingly, all torsion-free arithmetic groups
are of type (FL) even though they are rarely co-compact (see Serre's
lectures [32]).

We close this section by discussing the behavior of the finiteness

conditions with respect to passage to subgroups of finite index.

(1.2) Theorem (Serre [30]). Let I' be a torsion-free group and

I'' a subgroup of finite index. Then cd I"=cd I,

(1.3) Corollary. If T and T' areas in 1.2, then T is of type
(FP) if and only if I" is of type (FP).

Remark. It is not known whether the analogous statement for groups
of type (FL) is true.

We will now sketch the proof of the theorem; the corollary is left
as an exercise for the reader. Assuming first that c¢d I' < «, it is easy
toprove ¢dI''=c¢dI. For if ¢d I' = n then the functor Hn(F, -) is
right exact, hence Hn(l", F) # 0 for some free ZI'-module F; letting F'
be the free ZI''module of the same rank, we have Hn(l'", F') = Hn(F, F)

(this is a special case of 'Shapiro's lemma'), so edI'"=n=cd I. The
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opposite inequality is trivial.

It remains to prove that if ¢cd I'" < o« then cd I' < », Let X'
be a finite-dimensional contractible simplicial complex on which I
acts freely (and simplicially), i.e. X' is the universal cover of a finite-
dimensional simplicial K(I'",1). By a 'multiplicative induction' con-
struction (see [30], 1.7, or [25], II, §16) one produces a simplicial
I'-complex X whose underlying simplicial complex is isomorphic to the
product of (I' : I'") copies of X'; in particular, X is contractible and
finite dimensional. Moreover, the actionof I' on X is proper. Using
now the hypothesis that I' is torsion-free, we see that I' acts freely on
X, sothat X/I' is a finite dimensional K(I', 1) and cd I' < o,

§2. Virtual notions

Groups I with torsion, as we have seen, cannot satisfy any of
the finiteness conditions of §1. There will, however, often be torsion-
free subgroups I'" of finite index which do satisfy the finiteness con-
ditions. (For example, in the arithmetic case we have the congruence
subgroups. ) We are thus led to introduce 'virtual' finiteness conditions.

Let I' be a group which is virtually torsion-free, i.e. which has

a torsion-free subgroup of finite index. By Serre's theorem (1. 2), all
such subgroups have the same cohomological dimension, and this common
dimension is called the virtual cohomological dimension of TI', denoted
ved I, Similarly, we say that I' is of type (VFP) (resp. (VFL)) if T
has a subgroup of finite index of type (FP) (resp. (FL)). If I' is of type
(VFP) then Corollary 1, 3 implies that every torsion-free subgroup of

finite index is of type (FP). The analogous statement for groups of type
(VFL) is not known, and one therefore introduces the following apparent
strengthening of the (VFL) condition: A virtually torsion-free group is
said to be of type (WFL) if every torsion-free subgroup of finite index is
of type (FL). The main examples of groups of type (WFL) are the
arithmetic groups, as well as the S-arithmetic groups in the reductive
case (cf. [8], [9], [32]).

This paper is concerned with groups I' such that ved I' <
This condition has the following topological interpretation, which follows

31



immediately from the proof of Theorem 1. 2:

(2.1) Proposition. Let I' be a virtually torsion-free group.

Then ved I' < « if and only if there exists a finite-dimensional contract-

ible simplicial complex X on which I acts properly (and simplicially).

One should think of X as an analogue of the homogeneous space
G/K which is available if I' is a discrete subgroup of a Lie group,
cf. 1.1,

For future reference we record the following fact, which comes
from an examination of Serre's construction used in the proof of Theorem

1. 2:

(2.2) Addendum. If ved I' < « thenthe space X in 2.1 can be

chosen so that the fixed-point set XH is contractible for every finite

subgroup H C T

Questions., 1, Can X always be chosen so that dim X =ved I'?
We will see in the examples below a number of cases where this is known
to be true, but the general case remains open, even if I" is arithmetic.
Note, in particular, that if I" has torsion then the space X constructed
by Serre in the proof of Theorem 1.2 always has dim X = 2-ved T,

except in the trivial case where I' is finite and X is a point.

2. What algebraic finiteness conditions on I' will guarantee
that X can be chosen so that X/T" is compact? For arithmetic groups
such an X exists by Borel-Serre [8] and the equivariant triangulation
theorem [21]. Even for S-arithmetic groups, however, the question seems
to be open, the problem being the existence of an equivariant triangulation
(ef. [9, p231]). Note, again, that Serre's construction in the proof of 1.2

will never produce an X with compact quotient, unless I' is finite.

Examples. 1. vedT' =0 if and only if I' is finite.

2. vedI' =1 if and only if T" is the fundamental group of a
graph of finite groups of bounded order. This result is a generalization
of the theorem of Stallings [35] and Swan [40] that groups of cohomological

dimension 1 are free. See [28] for a proof and further references; see
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also [31], ch. I, 2.6. (Note, in this case, that one does have a con-

tractible 1-dimensional complex on which I' operates properly.)

3. If T is a (finitely generated) 1-relator group then I' is of
type (WFL) and ved I' = 2, To prove this we use the Lyndon exact

sequence [23]
0~2[r/C]~2Z[I]" > Z[I]~Z -0,

where n is the number of generators in some 1-relator presentation of
T, and C is a finite cyclic subgroup of I. It is known [19] that T is
virtually torsion-free, and clearly the above exact sequence provides a
finite free resolution of Z over ZI'" of length 2 for any torsion-free
subgroup I'' C I' of finite index, whence our assertion. We remark that
it is easy to realize Lyndon's exact sequence topologically as the cellular
chain complex of a 2-dimensional CW-complex on which I' operates

properly and with compact quotient.

4, If T" is a finitely generated nilpotent group then I' is of
type (WFL) and ved I' is equal to the rank (or Hirsch number) of T.

5. GLn(Z) is of type (WFL) and has virtual cohomological
dimension n(n - 1)/2. This is, of course, a special case of the Borel-
Serre results on arithmetic groups ([8], [32]), but we will indicate here
a different proof due to Ash [1], based on the reduction theory of Voronoi
[43]. Let X be the space of positive-definite real quadratic forms in n
variables, modulo multiplication by positive scalars. The group GLn(Z’)

acts properly on X (but with non-compact quotient). We have

dimx:w_

references cited there), X can be enlarged to a space X* with the

1. According to Voronoi [43] (see also [22] and the

following properties:

(a) The action of GLn(Z) on X extends to X*, and X*/GLn(Z)
is compact. (This extended action, however, is not proper,)

(b) X* admits a cell-decomposition compatible with the action of
GLn(Z).

Let o¢X* =X* - X, A glance at Voronoi's definition of the cells of
X* shows:

(c) 9X* is a subcomplex and contains the (n - 2)-skeleton of X*,
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It is easy to see that X* admits a barycentric subdivision com-
patible with the GLn(Z)—action, and we denote by X' the 'simplicial
complement’' of ¢X* in this subdivision, i. e. the union of all closed
simplices which are disjoint from ¢X*, Then X' inherits a simplicial
action of GLn(Z), and this action is proper since X' C X. Moreover,

X = X* - 9X* admits a canonical deformation retraction onto X' (cf.

[34], ch. 3, sec. 3, proof of Cor, 11), so X' is contractible. From

(a) we see that X'/GLn(Z) is compact (whence GLn(Z) is of type (WFL)),
and from (c) we see that X' has codimension at least n- 1 in X*, so
that

:n(n—l) )

ved GLn(Z') =dmX'=
Finally, to show that these inequalities are in fact equalities, we need
only note that GLn(Z) contains the strict upper triangular group, which is
a finitely generated nilpotent group of rank n(n - 1)/2; thus
ved GLn(Z) =n(n - 1)/2.

Remark. The fact that X retracts onto a GLn(Z’)—invariant sub-
space X' of dimension n(n - 1)/2 was first proved by Serre for n =2
(cf. [32], or [31], Ch. I, 4.2), by Soulé [33] for n= 3, and by Ash [1]
for arbitrary n. More generally, Ash proves the analogous statement
for a class of arithmetic groups including the groups GLn(Z’), using a

generalization of Voronoi's theory.

§3. Duality groups and virtual duality groups

References: [5], [6].

For any group I we may regard ZI' as a left I'-module and define
H*(', ZI'). (The group Hl(r, ZT'), for example, arises in the theory of
ends of groups.) Since ZI' is also a right I'-module and the left and
right actions commute, the groups Hi(l", ZT') inherit a right I'-module
structure. These modules play a special role in the theory of groups of
type (FP).

Definition, TI' is called a duality group if the following two con-
ditions are satisfied:
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(i) T is of type (FP).

(ii) There is an integer n such that Hi(l“, ZI') =10 for i#n
and Hn(l", ZI') is Z-torsion-free,

The integer n here is necessarily equal to cd I'; in fact, it is
easy to see for any group I' of type (FP) that cd I' is equal to the
largest integer i such that Hi(l“, ZT) + 0.

If T' is a duality group then the I'-module D = Hn(l", ZI') is
called the dualizing module of I'. The terminology 'duality group' and

'dualizing module' is justified by the existence of a duality isomorphism

(3.1) H(T, M) ~H_ .(T, D ® M)

n—i(
for any integer i and I'-module M, where the tensor product is over
Z and is given the diagonal I'-action: y. (d ® m) = ol ym for
yeI', d €D, m €M.

To prove 3.1, choose a finite projective resolution P of length n
of Z over ZI' and let P' be the dual complex of projective right
ZT-modules, i.e. P'= Hole_.(P, ZT')., Since Hi(l“, ZT) =20 for

i #n, P' provides a projective resolution of D over ZI":
0=P' =... Pl =D=0.
0 n
Using the canonical isomorphism HomZF(P, M) = P’ ®Z1" M, we deduce
HY(T, M)~ Torf_ri(D, M).
Finally, since D is Z-torsion-free we have
Tor2T' (D, M) ~H (T, D ® M),
whence 3, 1.

Remarks. 1. Conversely, if IT" is a group such that there exist
isomorphisms of the form 3.1 which are natural in M, (where D isa
fixed I'-module and n is a fixed integer), then I' is a duality group.
Indeed, I" is then of type (FP) by [13] or [36], and condition (ii) above

is easily derived from 3, 1.
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2. If the dualizing module D is Z-free, which is the case in all

known examples, then there are also isomorphisms
(3.2) H(T, M) ~ H""X(T, Hom(D, M),

where Hom(, )= Homz( , ), with the diagonal I'-action.

3. If T is an arbitrary group of type (FP), then one can still
derive isomorphisms of the form 3.1 and 3. 2, but with the dualizing
module D replaced by a 'dualizing chain complex'. (The groups on the
right-hand side of 3.1 and 3. 2 must then be interpreted as in the appendix
at the end of this section.) Conversely, the existence of such generalized
duality isomorphisms, natural in M, implies that I is of type (FP).

A duality group is said to be a Poincare duality group if D, as

Z-module, is infinite cyclic. In this case the duality isomorphisms take

a form more familiar to topologists:

H\T, M) ~H_ (T, M),

n-i

where 1\~/I denotes M with the I'-action 'twisted' by the character
I' = {+1} by which T acts on D. (For example, if there exists a
K(T', 1) which is a closed manifold, then T is a Poincaré duality group. )
From the point of view of group theory, however, Poincaré dualijcy is
rather rare, Torsion-free arithmetic groups, for example, are always
duality groups, but they are Poincaré duality groups only in the rank 0
case ([8], 11.4).

A group T is said to be a virtual duality group if it contains a sub-

group of finite index which is a duality group. This is equivalent to saying
that T is of type (VFP) andthat I' satisfies condition (ii) of the defini-
tion of 'duality group'. Again we set D = Hn(l", ZT) and we note that
every torsion-free subgroup I'' C I" of finite index is a duality group
whose dualizing module is D, regarded as I''-module. [More generally,
if T is an arbitrary group of type (VFP) then one can find a chain com-
plex of I'-modules which serves as dualizing complex in the sense of
Remark 3 above for every torsion-free subgroup of finite index. ]

We mention one example, which is a special case of the Borel-Serre

results on arithmetic groups [8]: The group GLr(Z) is a virtual duality
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group of dimension r(r - 1)/2, with

St if r is odd
(3.3) D=

St if r is even,

where St is the 'Steinberg module' and §t denotes St with the GLr(Z)-
action twisted by det : GLr(Z) = {£1}.

Appendix. Homology with coefficients in a chain complex

Let I" be agroupand C = (Ci)i>0 a chain complex of ZI'-modules.
We then set

H, (T, C)=H,(P®,_C),

Zr

where P is a projective resolution of Z over ZI' and the tensor
product is the total tensor product, i.e. the total complex associated to
the double complex P, ®ZP C, . Note that if C consists of a single
module M concentrated in dimension 0, then H,(T', C) = H (T, M).
The definition immediately gives us two spectral sequences con-

verging to H, (I, C). The first has
E’ =H (T, H C);
pa P q

the second has

1
pq

Eq = By, C),

with the differential d' induced by the differential in C, In particular,
one obtains from these spectral sequences the following two properties of
H (T, C):

(3.4) If each Cp is projective over ZI' then H, (T, C) = H*(Cl")’
[Here C = H(T, C)=12 Bt
holds if each Cp is H, -acyclic, i.e. if Hq(Cp) =0 for q> 0.

C] More generally, the same conclusion

(3.5) If £:C =C' is a weak equivalence of chain complexes (i. e.

f, :H,C > H,C' is an isomorphism), then { induces an isomorphism
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H, (T, C) 53 H(T, C").

One can also define cohomology groups H*(I, C), where
C= (Cl)i>0 is a cochain complex, as the cohomology of the total com-
plex associated to Homzl_,(P_ , C*). Again there are two spectral

sequences and properties analogous to those above,

PART II. EULER CHARACTERISTICS

Main references: [11], [30]; see also [4].

We wish to define the Euler characteristic of a group of type (FP)
as the alternating sum of the 'ranks' of the projective modules Pi which
occur in a finite projective resolution of Z over ZI. We begin, there-

fore, by defining a suitable notion of rank.

§4, Ranks of projective modules

If T is agroupand P a I'-module, we denote by PF the abelian
group Ho(l", P)=2% ®ZP
over ZI' then PP is a finitely generated free Z-module, and we set

P. If P is finitely generated and projective

e(P) = rankZ(P 1,).

We will sometimes write el_.(P) instead of &(P) when this is necessary
for clarity. The following proposition shows that & has the multiplicative

property which one expects of a reasonable 'rank':

(4.1) Proposition, Let I'' C T be a subgroup of finite index. If

P is a finitely generated projective ZI'-module, then P is also finitely

generated and projective as ZI''-module, and

ep(P) = (T : ) - ep(P).

Proof. Let I'" € I' be a subgroup of finite index which is normal
in T, Then we may replace I, I'', and P by I'/T'", I''/T", and Pl""
to reduce to the case where I is finite. But in this case one knows by a
theorem of Swan that Q ®Z P is free over QI'. It is clear, then, that
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eF(P) is simply the rank of this free QI'-module, and the proposition
follows at once. (Proofs of Swan's theorem can be found in [38], [39],
[2], and [3]; see also [4].)

Remark. There is another notion of rank, which we will denote
p(P), defined as the coefficient of the conjugacy class of 1 in the
Hattori-Stallings rank of P, (Recall that the Hattori~Stallings rank of
P, which we denote r(P), is a finite linear combination of I'-conjugacy

classes, cf. [3], [4].) The rank p, like &, has the multiplicative property
(4.2) pl-u(P) = (F I - pr(P)-

Bass's 'weak conjecture' ([3], p. 156) says that one always has &= p,
and, as Bass observed ([3], 6.10), this is easily proved if T is resi-
dually finite. To see this, note first that one can express &(P) as the
sum of the coefficients of r(P), hence &(P) = p(P) if r(P) is concen-
trated at the conjugacy class of 1. Now if I' is residually finite, then
we can find a subgroup I'" of finite index which does not contain the
finitely many non-trivial conjugacy classes where r(P) has a non-zero
coefficient. We will then have e_, (P) = pr,(P), and hence el..(P) = pl_(P)
by 4.1 and 4. 2.

r"

§5. Euler characteristics for groups of type (FP)

One can use either of the ranks &€ and p discussed in the previous
section to define the Euler characteristic of a group of type (FP). For
our purposes it will be more convenient to use &. (Of course, the two
definitions agree if I' is residually finite by what we have just proved,
and they agree for all I' if Bass's weak conjecture is true. See [3],

[4], and [17] for a discussion of the Euler characteristic based on p.)

Thus let T' be of type (FP) andlet P = (Pi) be a finite projective
resolution of Z over ZTI. We then set

X(T) = Z(-De(P,) = 2(-1)" rank, (P, .

Note that the homology of the complex PF is H,I', so we can also write
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x(T) = 2(-1)° rankZ(Hil“) .

Thus x(T') is simply the 'naive' Euler characteristic, which could have
been defined a priori, without any discussion of ranks. The point of the
definition in terms of &, however, is that we immediately obtain from

4,1 the multiplicative property

(5.1) x(T)=(r:1") x(ID)

if T'C T is a subgroup of finite index. This property is by no means
obvious from the naive definition, and some argument like that of §4 is

needed in order to prove it. On the other hand, (5.1) is obvious if T
is of type (FL). We will also need a multiplicative property of the Euler

characteristic with respect to the coefficient module; again this is obvious

if T is of type (FL) but requires some work in general.

(5.2) Proposition. Suppose I is of type (FP), k is a field, and

V 1is a kI'-module of finite dimension over k. Then

E(-l)idimkHi(l“, V) = x() - dim V = E(—l)idimkHi(I, V).

A proof of the second equality can be found in [11], §4, and the
first equality is proved similarly.

Before proceeding further, we mention a group theoretic application
of the existence of an integer-valued Euler characteristic satisfying 5.1

for groups of type (FP):

(5. 3) Proposition, Let T be a group of type (FP). If I can be

embedded as a subgroup of finite index in a torsion-free group I, then
x(I) is divisible by (T : I').

The proof is immediate, for T is of type (FP) by 1.3, hence

XD _ (Tyez.
T:n
Thus |[x(I)|, if non-zero, provides an obstruction to the existence

of torsion-free enlargements of T.

(5.4) Remark. Even if one is only interested in the case where T

is of type (FL), the proof requires a theory of Euler characteristics for
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groups of type (FP), since one does not know that T will be of type (FL).

(5.5) Corollary. Let 1=+ I = E =P =1 be a group extension,

where T' is of type (FP) and P has prime order p. If p J/ X () then

the extension splits.

In fact, E necessarily has torsion by 5. 3; I' being torsion-free,
it follows that any non-trivial finite subgroup of E must map isomor-
phically to P, thus providing a splitting.

We will see later (Cor. 7. 3) that 5.5 can be substantially improved.

§6. Extension to groups of type (VFP)

Let T be a group of type (VFP). Following the method of Wall
[44], we then define x(I') by choosing a subgroup I'' of finite index
which is of type (FP) and setting

x(T")

x(T) ORI

the right-hand side being independent of the choice of I'" by 5.1. Note
that x(I') is a rational number and is not, in general, an integer. For
example, if I' is finite then x(T) = l/ll“f. If T is torsion-free, on the
other hand, then T is of type (FP) and hence x(I) € Z.

We list some useful properties of the Euler characteristic:
(6.1) If I'"C T isa subgroup of finite index, then

(I =(T: 17 - x(I).

This is immediate from the definition.

(6.2) Let 1=>I'">T =>TI"—1 be a group extension, where I
and I'" are of type (VFP). If T is virtually torsion-free then T is
of type (VFP) and

X(T) = x(T") - x(T").

The proof that T" is of type (VFP) is straightforward. To prove

the Euler characteristic formula, one reduces to the case where all
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groups are of type (FP), in which case the result follows from a

spectral sequence argument together with 5. 2,

(6.3) Let I be an amalgamation Fl N 1“2 where A< 1“.1, and
suppose 1"1, 1“2, and A are of type (VFP). If T is virtually torsion-
free then T is of type (VFP) and

x(P)==x(F1)+-x(F2)— x(A).

This can be proved exactly as in [30], where the (WFL) case is
treated.

As an example of 6. 3 we may take T = SLz(Z) = Z4 *g Z6 (where
Z = Z/nZ). We obtain ?

_rpr_r__ 1
X(SLZ(Z))_4+6 2 12 °

(Alternatively, one can derive this formula from the fact that SL2(Z)
contains a subgroup of index 12 which is free on two generators, cf.
[30], 1.8, Ex. 2).

The theory of Euler characteristics becomes especially interesting
when applied to Chevalley groups over a ring of algebraic integers. In
this case one has Harder's formula expressing x(I') in terms of values
of ¢{-functions (see [20], [30], [32]). For future reference we record two

special cases of this formula:

n n
(6.4) x(Sp,,(2)) = I &1 - 2i) = I - B,,/2i,
i=1 i=1
where B,. is the 2ith Bernoulli number (B =lp =1 )
2i 2 6 T4 30 "
691- 43867

(6.5) x(E_(2) = -
7 221.3%.52.7%.11. 13- 19

Note that sz = SLz’ so we recover from 6.4 (with n = 1) the
formula x(SLz(Z)) =-1/12.

§7. Integrality properties of x(I')

Throughout this section I" will denote an arbitrary group of type
(VFP), We have seen that x(I') need not be an integer if I has torsion.
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The results of this section and the next resulted from an attempt to

explain more precisely the relation between the torsion in I" and the
non-integrality of x(I'). The first result along these lines is the following
observation due to Serre ([30], 1.8, Prop. 13):

(7.1) Proposition. If p is a prime such that I' has no p-torsion,

then x(I') is p-integral, i.e. p does not occur in the denominator of
x(T).

[Taking T = E7(Z), for example, it follows from this proposition
and 6. 5 that E7(Z) must have p-torsion for p=2, 3, 5, 7, 11, 13, 19, ]
To prove the proposition choose a torsion-free normal subgroup
I'" €T of finite index, and choose I‘p(l"' C 1"p C I) sothat Fp/l'" is
a p-Sylow subgroup of I'/T'. Then (T : Pp) is relatively prime to p,
and I is torsion-free (since any torsion would be p-torsion). Thus
x(l"p) €Z and x(I') = x(l"p)/(l" : Fp) is indeed p-integral.
Serre went on to conjecture the following more precise result,

which was proved in [11]:

(7.2) Theorem. Let m be the least common multiple of the

orders of the finite subgroups of I'. Then m - x(I') € Z.

Note that the p-part of m for a given prime p is simply the
maximal order of a p-subgroup of I', so the theorem can be restated as
follows: If a prime power pk occurs in the denominator of x(I'), then
I" has a subgroup of order pk.

For example, taking T = E7(Z) again, we see that not only must
E7(Z) contain elements of order 2, 3, ..., but it must contain sub-
groups of order 221, 39, .+. . This application of Theorem 7. 2 to the
study of torsion in the exceptional Chevalley groups is due to Serre. See
[32] for a more detailed discussion.

Another application is the promised improvement of 5. 5.

(7.3) Corollary. Let 1= T'=E =P =1 be a group extension

such that T' is of type (FP) and P is a p-group for some prime p.

If pJ x(I) then the extension splits.
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Proof. One has Xx(E)= x(I)/|P| , and this fraction is in lowest
terms. By the theorem, E must contain a subgroup of order equal to
fP f, and any such subgroup provides a splitting of the extension,

As an example of the corollary, take I' = Fn, the free group on
n generators, Then x(Fn) =1 - n, so an extension as above must split
if p J/n - 1. This result is vacuous if n =1 and easy to prove directly
if n = 2, using the known structure of the group of outer automorphisms
of F2 ([24], §3.5, Cor. N4). If n= 3, however, I know of no proof
other than that given here, based on the theory of Euler characteristics.

We now prove Theorem 7.2. Let X be a finite-dimensional con-
tractible simplicial complex on which I' acts properly (2.1). Let
I'' C T be atorsion-free normal subgroup of finite index and let Y=X/T".
[Note: Replacing X by its barycentric subdivision, if necessary, we can
assume that Y inherits a cell-decomposition from that of X, Taking
another barycentric subdivision, we can even make Y simplicial, cf.
[10]. ] Since I is of type (FP) and acts freely on X, we have
x(I'") = x(Y), the latter being, by definition, Z(—l)irk(HiY). Hence
x(T) = x(Y) AT : I'") and what we are trying to prove, then, is that

m

(OO x(Y) € Z,

or, in other words, that x(Y) is divisible by the integer d = (I : I'")/m.
To this end we note that the action of I on X induces a (simplicial)
actionof G=TI/T" on Y = X/I". Moreover, the isotropy groups
Gy (y € Y) are simply the images in G of the isotropy groups 1'X (x €X),
hence they all have order dividing m. Thus every orbit Gy has car-
dinality divisible by d, and one would like to conclude that x(Y) is
divisible by d. This is trivially true if Y is compact, since x(Y) can
then be computed by counting simplices, and the number of these in each
dimension is divisible by d. If Y is not compact, one still knows that
Y is finite dimensional and that H,Y is finitely generated, and it turns
out that these finiteness conditions on Y are enough to yield the result

that dfx(Y). In fact, one can prove:

(7.4) Theorem. Let Y be a paracompact space of finite coho-

mological dimension in the sense of sheaf theory, and assume that
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H*(Y, Z) is finitely generated. If a finite group G acts on Y and the
cardinality of each orbit Gy is divisible by some integer d, then
df x(¥).

[Here H*(Y, Z) denotes the sheaf-theoretic (or é/ech) cohomology
of Y, and x(Y) is defined tobe 3(-1)'rk@®XT, Z)).]
We will sketch the proof of this theorem; for further details see
[11], §2. Note first that, by a Sylow argument, we may reduce to the
case where G is a p-group for some prime p. Moreover, since H*(Y, Z)

is finitely generated, x(Y) is equal to the mod p Euler characteristic
Z(-l)ldimz HI(Y, Zp). Throughout the remainder of this proof, then,
p

H*( ) will denote H*( , Zp) and x will denote the mod p Euler
characteristic.

(a) If G acts freely on Y, then the desired result that
IGI lx(Y) is a well-known consequence of Smith theory, cf. [7], ch. IIL
More generally, one has the following relative version of this result:
If Y'CY isa G-invariant closed subspace such that H*(Y, Y') is
finitely generated and G acts freely in Y - Y', then fGI x(Y, Y").

(b) In the general case we use the technique of 'stratification by
orbit type'. For any subgroup HC G let Y, = ly eY: Gy =H)} and
let Y H) =G- YH. (Thus Y ") is the union of all orbits of type G/H.)
Let € be a set of represeniatives for the conjugacy classes of subgroups
of G which occur as isotropy groups in Y. It is easy to see that there
is a filtration of Y by closed subspaces # = Y0 C... C Yn =Y, such
that the succgssive differences Yi - Yi—l are the subspaces Y {H]
(H € @), It follows that

xY)= 2 x'(¥, ),
He@X {1}

where X' is defined as follows: If A 1is a locally closed subspace of Y
then we write A = B - B', where B and B' are closedand B' C B;

if H*(B, B') is finitely generated then we set x'(A) = x(B, B'), this
being independent of the choice of (B, B'). (Alternatively, x'(A) can
be defined in terms of the cohomology of A with supports in the family
of subsets of A which are closed in Y.) One must verify, of course,

that x'(Y }) is defined, but this follows easily from the fact (known

{H
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from Smith theory) that each fixed point set XH has finitely generated
mod p cohomology.

It suffices, therefore, to prove that x'(Y {H}) is divisible by
(G : H). Now clearly

Yim) = gE(’}—‘/N(H) e Ypp
where N(H) is the normalizer of H in G, so

x'(Y{H}) = (G : N(H)) - x'(YH).

On the other hand, the group N(H)/H acts freely in YH’ so the relative
version of (a) implies that x'(YH) is divisible by (N(H) : H). Thus
x'(Y {H}) is indeed divisible by (G : N(H)) - (N(H) : H) = (G : H).

§8. Formulas for x(I)

A careful examination of the proof of Theorem 7. 2 yields more
precise information than what was stated. For example, suppose T

satisfies the following condition:

(8.1) T has only finitely many conjugacy classes of finite sub-
groups, and for each finite subgroup H the normalizer N(H) is of type
(VFP),

One can then derive ([11], §6) a formula of the form

(8.2) x(I)=X(D) + T cy/lH,
HeC

where X(I") is the 'maive' Euler characteristic 2(—1)1rkZ(Hil"), C isa
set of representatives for the conjugacy classes of non-trivial finite sub-

groups of I', and c,, is an integer which is defined in terms of the con-

jugation action of NI(—iI) on the ordered set of finite subgroups of I" con-
taining H. This formula then 'explains', in terms of the torsion in T,
the failure of x(T') to equal the integer %(I'). We will not prove 8.2
here, but we will instead give some results which are less precise but
easier to use in practice.

We will need the notion of 'equivariant Euler characteristic' for a
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pair (T, K), where T isa group and K a CW-complex on which T
acts. For simplicity we will assume that the following two conditions
are satisfied:

i) The I'-action permutes the cells of K.

(ii) For each cell o of K, the isotropy group 1“0 fixes o
pointwise,

We then say that K is an admissible I'-complex. [Note: Condition

(ii) is harmless in practice; in the case of a simplicial action, for
example, it can always be achieved by passing to the barycentric sub-
division. ] If, in addition, K/T' is compact and each isotropy group 1“0
is of type (VFP), then we define the equivariant Euler characteristic

X p(K) by

dim o
xp®) = 21T (T ),
where o ranges over a set of representatives for the cells of K mod T,
It is easy to verify (cf. [30], 1.8, proof of Prop. 14(b)), that

Xpi®) = (T : ) - xp(K)

if I'"CT is a subgroup of finite index.

We will be particularly interested in the case where K arises
from a partially ordered set S on which I' operates, i.e. K is the
simplicial complex K(S) (sometimes called the nerve of S) whose ver-
tices are the elements of S and whose n-simplices correspond to the

chains s, < s, < ... < S, in S. In this case we set

if the right-hand side is defined.
We can now state (cf. [11], §6):

(8.3) Theorem. Let I' be a group which satisfies condition 8.1

and let § be the set of non-trivial finite subgroups of I. Regard & as

an ordered set under inclusion, with I'-action by conjugation. Then

Xxp(%) is defined and
X(T) = xp(F)  (mod Z).
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This theorem can be regarded as a formula for the 'fractional
part’ of x(I') in terms of the Euler characteristics of groups of the
form N(Ho) N...n N(Hn), where Ho c...C Hn is a chain of non-
trivial finite subgroups of I'. There is also a 'local' version of the
theorem, proved in [12], which says that if we just want the 'p-fractional
part' of Xx(T') for a fixed prime p, then it suffices to consider those

finite subgroups H which are p-groups, i.e.

x(T) = Xl_'(ﬂcp) (mod Z(p)),

where EFp is the set of non-trivial finite p-subgroups of I" and Z(p)

is Z localized at p. Quillen [26] improved this result by showing that
ffp can be replaced by the smaller set @p consisting of the non-trivial
elementary abelian p-subgroups of I'. (Recall that an elementary abelian
p-group is a group isomorphic to (Z/p)r for some integer r, called the

rank of the group.) The precise statement of this improved result is:

(8.4) Theorem. Let I' be agroupand p a prime such that N(H)
is of type (VFP) for every elementary abelian p-subgroup H € I'. Then

xr((ip) is defined and
I = G modZ, ).
x(I) = xp@y) ©)
We will give the proofs of Theorems 8. 3 and 8. 4 in the next section.

Remark. Theorem 8.4 (unlike Theorem 8. 3) is non-vacuous even
if T is finite, In this case the congruence above can be unscrambled

to yield
_ k
x(@p) =1 (modp),

where p* is the highest power of p dividing |T'| and x(@p) is the
Euler characteristic of the finite complex K(@p). See Quillen [26] for
further results about the homotopy type of K(@p).

The simplest case of Theorem 8. 4 is that where every elementary
abelian p-subgroup of I' has rank =1, i.e. I contains no subgroup
isomorphic to Z/p X Z/p. In this case K(@p) is discrete and one has
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xp(Gy) = 3 X(N(P) ,

where P ranges over the subgroups of I' of order p, up to conjugacy.
Using the fact that each P contains exactly p - 1 elements of order p,
one can easily rewrite the right-hand side of this equation in terms of the

elements of I" of order p and their centralizers, and one obtains:

(8.5) Corollary, Let I' be a group of type (VFP) and p a
prime such that I" contains no subgroup isomorphic to Z/p x Z /.

For each element o of T' of order p, assume that the centralizer

Z(a) is of type (VFP). Then I has only finitely many conjugacy classes

of elements of order p, and

X(D) =517 3 x@(@)  (mod Zyy)

where o ranges over the elements of order p, up to conjugacy.

As an application of this corollary, due to Serre, one can recover
Kummer's criterion in terms of Bernoulli numbers for the irregularity
of a prime p. This is done by taking I" = Spp_l(Z) and combining the
above congruence with Harder's formula 6. 4. See [11], §9.4, and [12],

§4, for details and a generalization.

§9. Proofs of Theorems 8. 3 and 8. 4

The proofs will require the rudiments of equivariant homology theory.
Specifically, we will need to know that there are groups H}:(K), defined,
say, if K is an admissible I'-complex, and having the following three

properties:
(9.1) If T acts freely on K then HE(K) ~H,(K/T).

(9.2) If f:K =K' is a I'-equivariant cellular map which induces

an isomorphism H,K = H_K', then f induces an isomorphism
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(9. 3) There is a spectral sequence converging to H,l:(K), with

1
E._ = & H(T
pq gex 0)’
p
where Zp is a set of representatives for the p-cells of K mod I'. Con-
sequently, if K/I' is compact and each Fo is of type (FP), then

D-D'ricy, B (K) = x (8 -

There are various ways to define the equivariant homology groups

and prove the above properties. For example, one can set
r
H, K) =H.(T, C(K)),

where C(K) is the cellular chain complex of K and the right-hand side
is to be interpreted in the sense of the appendix to §3. The properties
9. 1-9. 3 then follow from results stated in that appendix.

We can now prove Theorem 8,3, First, the fact that xr(ff) is
defined is an easy consequence of 8.1, cf. [11], §5, Lemma. Now let
X, as in the proof of Theorem 7.2, be a finite-dimensional contractible
simplicial complex on which I' acts properly, let I'' € I" be a torsion-
free normal subgroup of finite index, and let Y be the I' /I''-complex
X/I''. Assume further that X has been chosen so that XH is contrac-
tible for H € &, cf. 2. 2. Let X0 be the set of points of X with non-
trivial isotropy group and let Y0 = XO/F'. I claim that Y0 has finitely
generated homology. Accepting this for the moment, and noting that
T'/T" acts freely in Y - Yo’ we obtain (cf. proof of Theorem 7. 4)

x(Y) = x(Yo) (mod(T : T')).

Thus

x(Y )

©.0 x(0) = 2=y mod D).

Observe now that X 0= UHefFXH' Since each XH is contractible,
one deduces that X0 is homotopy equivalent to the 'nerve' of the covering
{XH }, and in the present context 'nerve' can be taken to mean the complex
K(F):
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(9. 5) Xo ~ K(F) .

(Cf. [11], Appendix B, and [26], proof of 4.1.) Moreover, this homotopy
equivalence can be taken to be compatible with the I'-action, in the sense
that there is a third I'-complex which maps to both X0 and K(F) by
I'-equivariant maps which are homotopy equivalences. Using 9.1 and 9, 2,

we conclude that
I I
H,(Y )~ Hy (X)) ~H, (K(3)).

Thus H*(Yo) is indeed finitely generated and, by 9. 3, X(Yo) = xl_.,(ff);
the right-hand side of 9. 4 is therefore equal to xr(EF), and the proof is

complete.

Theorem 8. 4 will be deduced from:

(9.6) Proposition. Let I' be a group of type (VFP) and let K
be an admissible I'-complex such that xl_,(K) is defined. If p isa

prime such that KI-I is contractible for every non-trivial finite p-subgroup
H C T, then

xp(®) = X(I)  (mod Z).

Proof. Let I'' C T be a torsion-free normal subgroup of finite
index. Replacing I' by a subgroup I‘p such that 1"/1"p is a p-Sylow
subgroup of I'/T"', we may reduce to the case where I'/T"' is a p-group,

in which case we will prove
X p(K) = x(T) (mod Z).

Note that every finite subgroup of I' is now a p-group, so our hypothesis
says that KH is contractible for every H € §. We may therefore argue

as in the proof above to deduce

x(I) = (ll(: ) (@T:19)

(mod Z) ,

where ir,(ff) = 2('1)11”1(% le (R(F), Zp). (One needs to use here the
fact that H*(Yo’ Zp) is finitely generated by Smith theory, cf. proof
of Theorem 7.4.) On the other hand, we may apply the same argument
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with X replaced by X = X x K, since T = xH x k" s still contrac-

tible for H € §, Writing ¥ = X/I'", we find

xpf® =y Ty (med 2,

whence the proposition.

Proof of Theorem 8.4, We remark first that I' has only finitely
many conjugacy classes of p-subgroups. This follows from the fact that,
with the notation we have been using, H*(YP, Zp) is finitely generated
(and hence YP has only finitely many connected components) for every
p-subgroup P C I'/T"; see [15], proof of Lemma 4.11(a), or [25], proof
of Prop. 14.5, for more details. In particular, I has only finitely many
conjugacy classes of elementary abelian p-subgroups, and it follows easily
that XF(G ) is defined. The theorem will now follow from Proposition
9. 6 applied with K = K(@ ), if we verify that K(@ ) is contractible
for each non-trivial p-subgroup HCT, Fixa central subgroup C of H
of order p. If A e @II;I, i.e. A is a non-trivial elementary abelian p-
subgroup of I normalized by H, then AH is non-trivial; hence we
have a sequence of inclusions A 2 AH c C-AI-I 2C in (1’;1 and this yields
the required contracting homotopy of K(@p)l—I = K(@II;I), cf. [26], 4. 4.

PART III. FARRELL COHOMOLOGY THEORY

References: [18], [14].

Let T be an arbitrary group of finite virtual cohomological dimen-
sion. If I' is torsion-free then cd I' < « and therefore H*(I') = 0 in
high dimensions. This suggests (by analogy with the results of §§7 and 8)
that, in general, one might try to 'explain' the high- dimensional cohom-
ology of T' in terms of the torsion in I'. For this purpose it is convenient
to use a modified cohomology theory H introduced by Farrell [18]. There
is a map Hi(l“) - ﬁi(F) which is an isomorphism for i> ved I', and one
has fI*(l") =0 if T is torsion-free. Thus it is reasonable to expect that,
in some sense, ﬁ*(r) isolates the cohomological contribution of the finite
subgroups of I'. It is not yet clear to what extent the Farrell theory will
be useful in the study of the low-dimensional cohomology of I' (which is
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often more interesting than the high-dimensional cohomology, e.g. for
applications to algebraic K-theory), but at the very least it allows one to
break the study of H*(I') into two steps: (a) understand fI*(I); (b) under-
stand the map H*(I) = H*(T).

Farrell's cohomology theory is a generalization of the Tate cohom-
ology theory for finite groups. We will therefore begin by reviewing the
latter (§10); then in §§11 and 12 we discuss the foundations of Farrell's
theory. Two of the well-known applications of Tate cohomology theory
are the Nakayama-Rim theory of cohomologically trivial modules (cf. [29])
and the theory of groups with periodic cohomology (cf. [16]); in §§13 and
14 we give the generalizations of these theories to infinite groups, using
Farrell cohomology. Finally, §15 contains the results alluded to above,
relating H*(T') to the finite subgroups of I'; as an application, we obtain
some results on H*(SLB(Z[é])).

§10. Review of Tate cohomology theory

Let G be a finite group. To define the Tate groups ﬁ*(G), one
begins with a projective resolution P = (Pi)120 of Z over ZG and
'completes' it to a complex of projectives P which is acyclic in all
dimensions:

.. P P =P P ..

The existence of such a completion is easily proved as follows. To begin,
one chooses an injection i: Z < P_1 of ZG-modules, such that P_l is
projective and i is Z-split (e.g. take P_ =1ZG and i(l):N:Zg€Gg).
Let C = coker i. Since C is Z-free, one can find a Z-split injection
j:C QP_Z, where P_2 is projective (e.g. take P = ZG ® C, with

G acting on the first f%ctor, and let j(c) = Zg ey ® g c) Continuing
in this way we obtain P:

. =P -’P ->P

\/ \/

P
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It is easy to see that any two such completions are canonically

homotopy equivalent, and we can therefore define
H*(G, M) = H*(Hom,,,(P, M))

for any G-module M. The Tate theory has the following properties:
(10.1) H*(G, M) =0 if G is the trivial group.

(10.2) As in ordinary cohomology theory one has long exact co-
homology sequences associated to short exact sequences of modules,

Shapiro's lemma, restriction and transfer maps, and cup products.

(10.3) H*(G, M) =0 if M is an induced module ZG ® A for some
abelian group A; hence the functors ﬁl(G, -) are effaceable and co-

effaceable.

(10.4) H'=9H' for i> 0.

(10.5) A° isa quotient of HO, namely, the cokernel of the norm
map N: H0 - HO.

(10. 6) ' isa subgroup of Ho’ namely, the kernel of the norm
map N : H0 - HO.

H, , if i<-L

(10.7) "

Properties 10, 1-10. 5 are easy to verify directly from the definition,
while 10, 6 and 10. 7 follow from the fact that a complete resolution can be
constructed by splicing together a finite type resolution P of Z over ZG
with its dual P' = HomZG(P, ZG) = HomZ(P, VAR

(10.8) ... =P, -’P{\;P’O*P'l-h..
VA

Thus we have a cohomology theory {H'] consisting of the functors
H' and Hi for i> 0, together with modified H° and Ho functors:
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§11. Definition of H*(I)

Let I' be a group such that ved I' = n< =, (The previous section
treated the case n=0.) Let P be a projective resolution of Z over
ZT. By a completion of P we will mean an acyclic complex P of pro-
jectives which agrees with P in sufficiently high dimensions. A com-

b

pletion of P can be constructed as follows: Let K =1Im {Pn - Pn_1
If I"C I is atorsion-free subgroup of finite index, then K is ZI''-
projective, hence we can find an embedding i: K = f’n-l where f’n-l
is ZT'-projective and i is ZI'-split (e.g. take Pn—l =ZT ®ZT' K and
iX=2y® y_lx, where 3 ranges over a set of representatives for the
cosets TI'/T"'). Applying the same process to coker i and continuing as
in the previous section, we obtain a completion of P:

e N

\/

K

In case T is of type (VFP), we can also use the following method
for constructing complete resolutions, which generalizes the splicing
construction (10, 8) available if I' is finite: Take the original resolution
P to be of finite type and let P' be the dual complex HomZP(P, ZY).

One can show that there exists a chain complex Q = (Qi) of finitely

i=0
generated projectives which maps to P' by a weak equivalence of the

form
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LQ PP 0

I

.= 0 "P'O-’..."P;]"P;H_l-’...

(If T is a virtual duality group, for example, then Q is simply a finite
type projective resolution of the module D = Hn(F, ZT').) The mapping
cone of this weak equivalence is then an acyclic complex of projectives,
whose dual is the desired completion .

Returning to the general case, now, one shows that any two com-
pletions are canonically homotopy equivalent, hence we can define the

Farrell cohomology groups by

H*(T', M) = H*(Hom,, (P, M)).

One shows also that there is a chain map P P, well-defined up to

homotopy, whence a map
H*(T, M) > H*T, M).

We will often suppress the coefficient module M from the notation and
simply write H*(T),
The Farrell theory has properties analogous to the properties of

the Tate theory listed in £10.
(11.1) fI*(F) =0 if T is torsion-free.

(11.2) One has long exact cohomology sequences, Shapiro's lemma,
restriction and transfer maps, and cup products. Moreover, there is a
'Hochschild-Serre' spectral sequence associated to a short exact sequence
1 =>I"=>T=>T"=1 of groups of finite virtual cohomological dimension,
provided either I or I'" is torsion-free. If I'" is torsion-free this

takes the form
A Ap+
and if I' is torsion-free then it takes the form

EPd = BP(rr, mh(r) = &P,
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(Note, in particular, that the edge homomorphism of the latter spectral
sequence yields an inflation map H*(I'") = H*(T) for any I'"-module

of coefficients in the case where I is torsion-free.)

(11. 3) H(F M) =0 if M is an induced module ZT ®Z1‘" M,
where I is a torsion-free subgroup of finite index and M' isa I''-

module; hence the functors I:II(F, -) are effaceable and co-effaceable.
(11. 4) B'=H' for i> n=ved I

(11.5) AT, M) is isomorphié to the cokernel of the transfer
map Hn(F', M) - Hn(P, M), where I' is any torsion-free subgroup of

finite index.

Assume now that I' is a virtual duality group (§3), let D:Hn(r', ZT),
and let f{i(r, M) = H(T, D®M). Then we have:

1L6) HYT) is isomorphic to the kernel of the transfer map
H ()= H ("), with T' as in11.5,

(1L.7) B =H_, , for i< -1,

(11.8) There is an exact sequence

0-H ' -8 -H

-H -8 - . . -H -H'-H"-0.
n n-1 0

To summarize, then, the Farrell cohomology theory () (at
least if T is a virtual duality group) consists of the cohomology functors
H' for i> n; the homology functors H1 for 1> n; modified H" and
Hn functors; and n additional functors H .y ﬁn_l, which are some

sort of mixture of the functors H' and Hi for i<n:

HO Hn—l Hn n+1 n+2 .
} VoM H N
ﬁ'3 H—z i_‘I—l I'_‘Io ﬁn—l ﬁ n+1 *n+2
A0 i/ 3
I-In+2 I-In+1 Hn Hn—l Ho
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Remarks. 1. Properties 11. 6-11. 8 generalize to the case where
T is an arbitrary group of type (VFP); the module D must then be
replaced by a suitable complex, cf. §3.

2. There are also Farrell homology groups ﬁ*(r, M), defined
by . .
H (T, M) = H,(P ®Zl" M),
and having properties analogous to those above. If I' is a virtual duality

group then one has

flr, M~H_, (T, D®M).

n-i-1

If, in addition, D is Z-free, then
fi.(r, M) ~ 8T, Hom(D, M)).

As usual, both of these isomorphisms can be generalized to the case

where T is only assumed to be of type (VFP).

Finally, we mention that the groups ﬁ*(I‘, M) are torsion groups;
in fact, by transfer theory they are annihilated by the greatest common
divisor d of the indices of the torsion-free subgroups I" of finite index.
One might expect, by analogy with Theorem 7, 2, that they are in fact
annihilated by the least common multiple m of the orders of the finite
subgroups of I, but it is not known whether or not this is true. [Note
that m and d involve the same primes, and m‘d.] In view of the theory
of cup products, it would suffice to show that 1 € flo(F, Z) is annihilated
by m.

Example. Suppose I = SLB(Z). Then d =48 and m = 24, and
the calculations of Soulé [33] show that ﬁ*(F, Z) is indeed annihilated
by 24.

§12, Equivariant Farrell cohomology

It has been known for a long time that equivariant cohomology theory
provides a machine for relating the cohomology of a discrete group to the

cohomology of its finite subgroups. In this section we present the Farrell
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cohomology version of this equivariant theory. This generalizes a theory
introduced by Swan [37] for finite groups. Throughout this section, T’
denotes an arbitrary group of virtually finite cohomological dimension.
For simplicity, we will define the equivariant cohomology groups
ﬁ’f,(K) only in the case where K is an admissible I'-complex (§8).
Moreover, we will assume that K is finite-dimensional. In this case

we define, for any I'-module M,

ﬁi:(K, M) :H*(Homzr(f’, C(K, M))).

A

Here P is a complete resolution for I'; C(K, M) is the cellular cochain
complex of K with coefficients in the underlying abelian group of M, and
C(K, M) is given the diagonal I'-action; and Hom denotes the total
homomorphism complex, i.e. the total complex associated to the double
complex Homzr(f’, , C' (K, M)). As before we will often suppress M
and simply write ﬁ’lﬁ(K). Note that I:I’f(pt.) = ﬁ*(P), hence for any K

there is a canonical map
HX(T) -~ HE(K),

induced by the map K = pt. of I'-complexes.
We immediately obtain from the above definition two spectral

sequences converging to I:I*l‘..(K). The first has
M = 5P(r, 5K),

and the second has

where Ep is a set of representatives for the p-cells of K mod I'.  The

Ez—term of the second spectral sequence is given by
) =H(R/T, {BYT))),

where the right-hand side is to be interpreted as follows. Fix q € Z. To
each cell 7 of K/T' we may associate the group A'r= ﬁq(ro), where o

is any cell of K lying over 7; this group is independent of the choice of
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0, up to canonical isomorphism. Given a face relation 7' < 7, we may
choose liftings o' and o with o' < 0. We then have 1“0, 2 1“0 by
admissibility, hence there is a restriction map ﬁq(FO,) - ﬁq(Fo) which
yields a well-defined map AT, ->AT. These maps satisfy the obvious
compatibility condition whenever 7" < 7' < 7, and hence we have a
'coefficient system' on K,/I'. What occurs above, then, is the cohomology

of K/T' with coefficients in this system.

Remarks. 1. A coefficient system of this sort gives rise toa
sheaf which is constant with stalk AT on the interior of 7, and the
Ez-term above is isomorphic to the cohomology of K/I' with coefficients

in this sheaf.

2. The first spectral sequence above lives in the first and second
quadrants, and the second one lives in the first and fourth quadrants.
There is no problem with convergence, however, in view of the finite-

dimensionality of K.

We record, now, two properties of equivariant Farrell cohomology

which follow easily from the above spectral sequences:

(12.1) I1f f: K= L is a cellular I'-map which induces an isomor-
phism HK = H,L, then f induces an isomorphism ﬁ*li.(K) & I:I"I:.(L). In
particular, if K is contractible, then I:I’f(K) zI:I*(l").

(12.2) If K'CK is a I'-invariant subcomplex such that I' acts
freely in K - K', then H(K) s»ﬁia(K').

Finally, we call attention to an important special case where we
will apply the equivariant Farrell theory. Let X be, as in 2.1, a finite-
dimensional contractible complex on which I' acts properly. Then

I:Ii‘_.(X) = ﬁ*(F), and the second spectral sequence therefore takes the form:
(2.3 EPl=wPx/r, {#YT) )~ #TYD.

This spectral sequence relates the Farrell cohomology of I' to the Tate

cohomology of its finite subgroups.
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(12.4) Exercise. Suppose that X has been chosen so that XG

is connected and non-empty for every finite subgroup G C I'; we know

by 2.2 that this is possible. Show that the left-hand edge E " of the
above spectral sequence can be identified with li_m H*(G), where G
ranges over the finite subgroups of I' and the limit is taken with respect
to all maps between finite subgroups given by conjugation by an element

of I. Explicitly, an element of this limit is a compatible family { uG},
where G ranges over the finite subgroups of T, ug € H*(G), and the
compatibility condition is the following: If G and G' are finite subgroups
and y is an element of I' such that 3Gy & C G', then u,
under the map H*(G') = H*(G) induced by conjugation by 1.

maps to Uy

§13. Cohomologically trivial modules

I' continues to denote an arbitrary group of finite virtual cohomo-
logical dimension. As an immediate consequence of the equivariant co-

homology spectral sequence 12, 3, we have:

(13.1) Lemma. Let M be a I'-module such that H*(G, M) = 0
for every finite subgroup G C I, Then fI*(l", M) = 0.

We will say that M is cohomologically trivial if, as in the lemma,
ﬁ*(G, M) = 0 for every finite G C I'. It then follows from the lemma
that ﬁ*(PO, M) = 0 for every subgroup r cr.

In case I'" is finite, we have the following characterization of co-

homologically trivial modules, due to Rim [27] (see also [29]):

If T is finite then a I'-module M is cohomologically trivial if and
only if it has finite projective dimension over ZI', and in this case
proj dimzl_.M =1, If M is Z-free and cohomologically trivial, then

proj dim 1_,M =0, i.e. M is ZTI'-projective.

4
We now extend this to the general case, Let ved I = n.

(13.2) Theorem, _A_ I'-module M is cohomologically trivial if

and only if it has finite projective dimension, and in this case

proj dimZPM =n+1 If M is Z-free and cohomologically trivial then

proj dimZFM =n.
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Proof. Clearly projective modules are cohomologically trivial,
hence so is any module of finite projective dimension. Conversely,
suppose M is cohomologically trivial, and assume first that M is
Z-free. I claim that Hom(M, N) is cohomologically trivial for any
I'-module N, where Hom(, )= HomZ( , ) with the diagonal I'-action.
Indeed, it suffices to verify the claim in case I' is finite, in which case
it follows at once from Rim's theorem. We therefore have
H*(T', Hom(M, N)) = 0, hence

Ext;r(M, N) = HY(T', Hom(M, N)) = 0

for i> n, and proj dimZTM =n, Incase M is not Z-free, choose
a surjection P =+ M with P projective. The kernel M' of this map
will have proj dimz,l_M' = n by what we have just proved, hence

proj dimZIM =n+ 1.

§14. Groups with periodic cohomology

A group T' of finite virtual cohomological dimension will be said
to have periodic cohomology if for some integer d > 0 there is an element
of ﬁd(r, Z) which is invertible in the ring ﬁ*(P, Z). Cup product with

such an element then defines periodicity isomorphisms

air, m) ~ 7T, m

for any I'-module M and any integer i. Similarly, one can define
p-periodicity for a fixed prime p in terms of the existence of an inver-
tible element of positive degree in the ring ﬁ*(F, Z)(p), the p-primary
component of H*(I', Z). [One can show by a Bockstein argument that
this is equivalent to the existence of an invertible element of positive
degree in ﬁ*(P, Z/p). ] Clearly T has periodic cohomology if and only
if it has p-periodic cohomology for every prime p.

One way to prove periodicity (or p-periodicity) is by exhibiting a
finite quotient I'/T"" which has periodic (or p-periodic) cohomology,
where I'' is torsion-free. This follows from the fact that the inflation
map (11, 2) is a ring homomorphism ﬁ*(F/F', Z) - ﬁ*(r, Z). Similarly,
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if T' has periodic or p-periodic cohomology, then so does every sub-
group (because the restriction maps are ring homomorphisms).
The main result on groups with periodic cohomology is the following

theorem:

(14.1) Theorem. Let I' be a group such that ved I' < « and let

p be a prime. The following conditions are equivalent:

(i) I' has p-periodic cohomology.

(ii) There exist integers i and d with d> 0, such that

~1 ~i+d
r = r f 11 I'-modul M.
H(T, M)(p) H (T, M)(p) or a modules

(iii) Every finite subgroup of T has p-periodic cohomology.

(iv) T does not contain any subgroup isomorphic to Z/p X Z /p.

(v)  Every finite p-subgroup of I' is a cyclic or generalized

quaternion group.

Proof, Trivially (i)= (ii). To prove (ii)= (iii), note first that
if (ii) holds for some i then it holds for all i by a standard 'dimension
shifting' argument. Also, (ii) holds for any subgroup of I' by Shapiro's
lemma. In particular, if GC T is finite then HY(G, Z),) = 5°(G, 2) ),
and this is well-known to imply that G has p-periodic cohomology, as
required (cf. [16]). The equivalences (iii)<= (iv) <> (v) are well-known
from the theory of finite groups with periodic cohomology [16]; so it
remains to prove (iii)= (i).

We recall first that a weaker version of this implication was proved
by Venkov ([41], [42]), although he did not use the language of Farrell
cohomology theory. (He spoke, rather, of periodicity in the ordinary
cohomology of I in sufficiently high dimensions.) Restated in terms of
Farrell cohomology, his result is the following: If there exists an element
u eBYT, 2),) (@> 0) whose restriction to fi*(G, ), is invertible
for every finite G C I', then u is invertible and hence I' has p-periodic
cohomology. This result of Venkov is easily deduced from the multiplica-
tive structure in the equivariant cohomology spectral sequence 12, 3,

localized at p:

Bt =wx,r, {AYr) D)= ﬁs+t(r)(p).
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Indeed, one need only observe that multiplication by u induces an iso-
morphism on E2 and hence also on the abutment.

To prove (iii)= (i), then, it suffices to prove that (iii) implies the
existence of such an element u. This again follows from the multiplica-
tive structure in the above spectral f,equence. For let Uy be an inver-
tible element of positive degree in H*(G, Z)(p), where G ranges over

the finite subgroups of I. Raising u . to a power, if necessary, we

G

may assume that {u.] is a compatible family in the sense of 12. 4, so

G
that {uG} represents an element of the edge Eg*. It now follows by an
argument of Quillen ([25], proof of Prop. 3. 2) that some power of {uG}
is a permanent cycle in the spectral sequence and hence is the image of

some element u € ﬁ*(P, Z) under the edge homomorphism

(14.2) AX(T, 2), > lim HX(G, Z)p) -

(p)

This completes the proof.

Remark. In the language of Quillen [25], the above proof is based
on the fact that the map 14. 2 is an 'F-isomorphism', It should be noted
that Quillen's methods yield the much stronger result (for any group I
with ved I' < ) that the map

H*(T, ) = LimA*A, 2Z)

is an F-isomorphism, where A ranges over the elementary abelian

p-subgroups of T,

§15. The ordered set of finite subgroups

I" continues to denote an arbitrary group of finite virtual cohomo-
logical dimension. As in 88, if I" operates on a partially ordered set

S then we set
H’l':(S) = H;(K(S)) .

As usual it is understood here that there is an arbitrary I'-module M of

coefficients. In this section we will prove analogues in Farrell cohomology
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of Theorems 8. 3 and 8, 4.
Recall that, for any finite~dimensional admissible I'-complex K,

there is a canonical map HA*(I") —» ax (K)

(15.1) Theorem. Let F Dbe the set of non-trivial finite subgroups

of T'. Then the canonical map

AX(T) = HE()

is an isomorphism.

Proof. Let X and X0 be as in §9, proof of Theorem 8, 3. Then

H¥(T) = Ar(®)  byla.l
~ H*
I;IF( o) by 12.2
= Hf( ) by 12.1 and 9. 5.

It is easy to check that this composite isomorphism is in fact given by

the canonical map H*(I) ->f{’1ﬁ(3‘).

Next we prove the analogue of 9. 6:

(15.2) Proposition. Let K be a finite- dimensional admissible

T'-complex and let p be a prime such that KH is contractible for every

non-trivial p-subgroup H € I'. Then

HYT), | > AX(K), | .
@) ™ HEE) )
Proofz. Let T' C I‘p C T be as in the proof of 7.1. Since
(r: Fp) is relatively prime to p, we may use restriction and transfer
maps in the usual way to obtain, for any finite-dimensional admissible
I'-complex L, a natural embedding of fix (L)( ) as a direct summand

of H* (L). Applying this to L =K and L = pt., we see that the

p
canonical map H* (P)( ) - H* (K) (0) is a direct summand of the canonical

map H*(l" ) = H* (K). It therefore suffices to prove that the latter is an
P

2 Iam grateful to D. Quillen for a suggestion which simplified my

original proof,
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isomorphism, Just as in the proof of 9. 6, we now apply the method of
proof of Theorem 15,1 to (Fp, X X K) and (Fp, X) to deduce

2 * ~ 1Y% ~ 0 *
Hf (K) ~ff. (5) ~ BN,
p p

where F is now the set of non-trivial finite subgroups of Fp‘ 1t is

easily checked that the composite isomorphism is given by the canonical

map, whence the proposition,

Let @p be the set of non-trivial elementary abelian p-subgroups
of T. As in §9 (proof of Theorem 8. 4), we may apply 15. 2 with
K= K((Rp) to obtain:

(15. 3) Theorem. For any prime p,

HY D)) = HEE) ) -

This theorem gives information about ﬁ*(l")(p) in terms of the elementary
abelian p-subgroups and their normalizers, cf. [14], Prop. 2. Incase T
contains no elementary abelian p-group of rank 2 (i, e, if I' has p-periodic

cohomology), this information takes the following simple form:

(15.4) Corollary., I I contains no subgroup isomorphic to
Z/p x Z/p, then

ﬁ*(r)(p) ~ 11 ﬁ*(N(P))(p) ,

where P ranges over the subgroups of I' of order p, up to conjugacy.

In [14], §6, we applied the corollary with T = SLB(Z’) to calculate
the 3-primary component of H*(SLB(Z)), from which we obtained
H*(SLB(Z), Z) and H*(SL3(Z), St) modulo 2-torsion. Here St denotes
the Steinberg module, cf. 3.3. (Of course, these calculations have been
subsumed in the work of Soulé [33].) We now give another example in
which Theorem 15. 3 yields concrete information relating ﬁ*(F) to the
cohomology of the normalizers of the elementary abelian p-subgroups of T

Let T = SL}(Z[% ]). We will apply Theorem 15, 3 with p = 2, Note
first that every elementary abelian 2-subgroup of I' is diagonalizable and
hence has rank = 2; thus K(@Z) is a graph. Let Po be the group of
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order 2 generated by

-1 0 0
0 -1 0 -
0 0 1

and let Pl be the group of order 4 consisting of the matrices

+1 0 0
0 #1 0
0 0 #1

in SLB. Then P0 C Pl so there is an edge of K(@z) with vertices P0
and Pl, and it is easy to see that this edge is a fundamental domain for
the action of T' on K(@z). The isotropy groups of the vertices Po and
Pl are the normalizers N(Po) and N(Pl). Explicitly, N(Po) is iso-
morphic to GLQ(: GLz(Z[é 1)), embedded in SL3 in the usual way,
0
Nk

Ab
0 ¢ | detA!

and N(Pl) is the group SM3 of monomial matrices in SL}' The iso-
tropy group of the edge (Po’ Pl) is GL2 n SM3 = M2, the group of

2 X 2 monomial matrices. The second spectral sequence of equivariant
cohomology theory (§12) therefore yields a 'Mayer-Vietoris' sequence
relating HY(@,) to H*(GL,), f*(SM,), and H*(M,), so we have by
Theorem 15, 3 a Mayer-Vietoris sequence

L ai-l il il ~i S N
C S HTNM) = HSL)) ) S H(GL) ) SH(SM,) =H (M), ...

The result can be stated more precisely, as follows. Let

)

= GLz*M SM3 and consider the canonical map T - TI. One can show
2
that K(@z) is connected, whence this map is surjective and its kernel

1(K(®2)), cf. [31], ch. I, 5.4, Ex. 3.
There is therefore an inflation map (11. 2)

is isomorphic to the free group 7

H*(D) » A%(T) ,
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and our result is that this induces an isomorphism on 2-primary com-
ponents, with any I'-module of coefficients. In particular, since

ved I' = 5 by Borel-Serre [9], we have .
mi(r), \ > BT
( )(2) H( )(2)
for i> 5,
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3 - Free abelianised extensions of finite groups

K. W. GRUENBERG
Queen Mary College, London

The central subject matter of these notes is the class of groups of
the form F /R, R], where F is a finitely generated free group and F/R
is isomorphic to a given finite group G. Lecture 1 deals with the relations
between different such covering groups of a fixed group G; Lecture 2
with their decompositions; and Lecture 3 with their generation properties.

The lectures constitute a report on the present state of knowledge
concerning these topics. I have tried to explain fully the various concepts
that arise and the connexions between them, but I have had to omit almost
all proofs. Nevertheless, I hope that this account will be found accessible
by the reader who is interested in presentations of groups but does not
have the rather specialised background in module theory necessary for
many proofs. This background might be called 'the Ko-theory of finite
groups'. Perhaps the best reference for it is Swan's volume in the
Springer Lecture Notes series, no. 149 ('K-theory of finite groups and

orders').

I: FREE EXTENSIONS AND THE COMPARISON PROBLEM
§1 Introduction

Problems connected with presentations of groups arise within group
theory in two essentially different contexts. In the first of these, we are
given a group by means of generators and relations and wish to deduce
structural information about the group. The theory of free products and
the theory of groups with a single defining relation are typical examples of
this situation. In the other context, the group is supposed to be known
structurally or representation theoretically (but possibly in quite a weak
sense) and the aim is to deduce extension theoretic consequences. Ques-

tions concerning finite presentability fall naturally under this heading. In
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these lectures we shall be concerned only with the second of these con-
texts.

Explicitly, suppose G is our given group and E is a group in
some sensible class all of whose members have G as homomorphic
image. Thus there exist homomorphisms of E onto G and the aim is
to study these and their kernels.

We look briefly at an important example. Let 7:E =+ G and
suppose (i) N =Ker 7 is centralin E: i.e. [N, E] =1; and (ii) that
N =E'=[E, E] (which implies that N has no supplement in E and
thus G does not arise from a group similar to E but 'smaller' than
E: if E1N= E, then Ei =E', whence E1 = E), Take any free presen-
tation of G:

R>>F>»G

and lift 2 to a homomorphism o:

Then o is necessarily surjective (hypothesis (ii) on N)and [R, Flo=1,
Moreover, Ker o contains a complement K to R n F' modulo [R, F].

(For if L =Ker o, then N=E' implies R = F'L and hence
R=®nF)L. Thus L/LnR nF' is free abelian and therefore

L/[R, F] splits over LnR n F'/R, F|. A complement is then auto-
matically a complement to R n F'/[R, F] in R/[R, F].) Hence o actually

induces an epimorphism

m\__,f

and R/K is mappedby o onto N. Now
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RK=ZRnNF/R, F|= Hz(G’ z)

and hence is an invariant of G. It follows that the size of N is limited.

The groups F/K are the Schur covering groups of G (called Darstellungs

gruppen by Schur).

?F

Ker o

RNF'

R, F]

A less restrictive version of the above situation arises when N
(i) is merely assumed to be abelian (N' = 1) and (ii) possesses no

supplement in E. Here 7 : F - G lifts as before to an epimorphism o:

but now all we know is that R'c =1: i.e. 0 induces F/R'*E and R/R’
maps onto N,

The free abelian group R/R' has the structure of a G-module via
conjugation by F and is called the relation module determined by the free

presentation 7,

The significance of the extension F/R' is best expressed in a cate-
gorical form. We consider the class of all extensions by G with abelian
kernel and make these the objects of a category (g). The morphisms are

the homomorphisms of extensions that induce the identity on G:
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Ar—E—»»G

al l lz

A1>—-—>E1——»G .

We shall abbreviate the above diagram as (ozlc): A IE) - (A1 IEl). Free
objects can now be defined via universality in a sensible manner and it
turns out (cf. [7], §9.5) that the free objects are precisely the extensions

R|F):R>—>TF =G,

where we have written R=R/R', F=F/R' (and F is a free group).
Similarly, if (% ) is the category of all extensions by G with
central kernel (cf. [7], §9.9), the free objects are all those of the form

R/R, F]>—F/R, F]»G.

The free extensions (R fF) form the main object of study in these
lectures. Perhaps the first point to make is that these extensions can
actually provide information about arbitrary extensions N>—=E =G,
where N is not necessarily abelian. As an important illustration, con-
sider the problem of the minimum number of defining relations.

First some notation (for use here and later). If X is a group and
P is a group of operators on X, then we shall write dP(X) ‘for the mini-
mum number of elements needed to generate X as P-group. The three
basic situations of this type are (i) X is a normal subgroup of P and P
acts by conjugation; (ii) X is a P-module; (iii) P = 1, the trivial group,
and here we shall write d(X) = dl(X) (which is then the minimum number
of group generators of X).

We return now to our extension N>—=E = G. It is not difficult to
show that if E is finite and N> N', then dE(N) = dE(N/N') (cf. [8],

p. 9). Much more generally, Akbar Rhemtulla has proved that if dE N)
is finite and N > N', then dE(N) = dE(N/N') provided N has the
following property:

(*)  there does not exist an infinite descending series of E-normal

—_ ~ :
subgroups N = C0 > C1 ... Wwith each Ci/Ci+1 perfect.
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It follows that if (R IF) is a free extension in (E*) with dF(R)
finite, then dG(R) is an attained upper bound for the set of all dF(R /K),
where R/K has the property (*) of N above (with E = F/K).

As far as I know, no case is known where dF(R) > dG(R). The
above result underscores the difficulty of constructing such a presentation,

We shall return to this problem at the end of the last lecture.

§2. Nielsen equivalence
g
Suppose we are g1ven a free presentation R > F =+ G andalso

an extension N>—>F -»G We can lift LA to o

but, in the absence of any supplementation condition on N, o need not be
surjective. (For example, if d(Fo) = d(G) < d(E), then o cannot be an
epimorphism. )
However, starting from any free presentation of E: o F1 -k,
T
1
we can obtain a free presentation of G, viz. R1 > F1 - G, where
T, =0_T.
1 1
Suppose d(Fo) = d(Fl) and let F2 = F0 * L = Fl, Then we obtain

a new free presentation of G by
M=ok (collapse): RZH F2 - G,

Identifying F1 and F2 gives two free presentations of G from the same

free group F:
NTTISNn
(1) /G .
R >F 2

How do they compare?
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The nicest possible connexion arises if there exists an automorphism
a of F so that an, =1, . We then say that L8 and ™, are Nielsen
equivalent. If Epi(F, G) denotes all epimorphisms of F onto G, then
7= 'n defines a permutational representation of Aut F on Epi(F, G)
and the orbits are precisely the Nielsen equivalence classes for G over
F.

Rather little is known about this permutational representation of
Aut F, We state here two facts for a finite group G (and these are about

the only reasonably general results available at present):

(2) Let G be afinite group, Then Aut F acts transitively on
Epi(F, G) (i.e. any two free presentations from F are Nielsen equiva-
lent) if

()  d(F) =2 log, e} (Gilman [6]),

(ii) G is soluble and d(F) =1 + d(G) (Dunwoody [4]).

The enormous gap between these two results suggests a whole string
of questions. For example: is there some sensible (group theoretic)
description of the class of finite groups G for which Aut F operates
transitively on Epi(F, G), where d(F) =1 + d(G)? (There is some
interesting information on this point in the paper of Gilman referred to
above. Cf. also [3].) If k =k(G) is the smallest integer so that Aut F
operates transitively on Epi(F, G), where d(F) =k, what structural
information of G does k depend on?

The approach to presentation-theoretic problems involving Nielsen
classes goes back to work of Hall and Neumann in the mid-thirties ([13],
[16]). Hall works with the concept of G-defining subgroup of F. This

means a subgroup which is the kernel of an element of Epi(F, G). If we
allow Aut G to operate on Epi(F, G) via 7= 70 (0 € Aut G), then the
set of orbits Epi(F, G)/Aut G is naturally bijective with the set of all
G-defining subgroups of F. Observe that we now have an action of

Aut F X Aut G on Epi(F, G). The orbits under this group are Neumann's
T-systems (for G over F).
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§3. Comparing free extensions

If T, (as in diagram (1) above) are Nielsen equivalent, then
obviously (ﬁl |F), (_R2 IF) are isomorphic free extensions in (g). But
if we only require this conclusion, then we can do considerably better
than Theorem (2). To state the result, which is due to Peter Linnell
(unpublished) and is based on earlier work of J. S. Williams [25], it is
convenient to have the following definition.

The generation gap of G is the non-negative integer

gap(G) = d(G) - d(g),

where g is the augmentation ideal of G (i.e. the kernel of the ring
homomorphism ZG = 7 determinedby gt 1, g € G)., Note that gap(G)
is defined for any finitely generated group.

(3) If G is finite and d(F) = max{d(G), d(G) + 1 - gap(G) }, then
any two free extensions from F are isomorphic: (ﬁl |F) = (ﬁz IF).

We shall make a brief comment about the proof of this theorem later
(§5). Note that, in particular, the conclusion holds for every finite group
G if d(F) =1+ d(G). This makes it very likely that Nielsen equivalence
is genuinely more restrictive than the isomorphism of free extensions.
But I believe no explicit example to this effect has appeared in the liter-
ature,

The gap function will be discussed in more detail in Lecture 3. For
the present we remark only that every finite soluble group G has
gap(G) = 0 and that there do exist groups whose gap is any given positive
integer.

The conclusion of Theorem (3) can easily fail. when d(F) = d(G).
For if A is a finite abelian group and d(F) = d(A), then the set of iso-
morphism classes of free extensions (R|F) is bijective with the Nielsen
classes over F (Williams [25]). The number of these Nielsen classes has
been calculated by Dunwoody in his thesis: if n is the smallest invariant

factor (torsion coefficient) of A, then the number is

77



2¢(n) if n#2
1 if n=2,

(Here ¢ is Euler's function. )

The minimal free extensions of A cannot, in fact, be wildly differ-
ent: for there is here only one T-system. This elementary fact should
be compared with Dunwoody's construction [3], for each prime p and
positive integer m, of a p-group G of class 2 having at least m T-
systems (necessarily over a free group of the minimum possible rank
d(G)). (The number d(G) can also be specified initially. )

Despite all this, the free extensions arising from a single free group
F are always closely related to one another, even when d(F) = d(G). In
fact they lie in a single genus class. The meaning of this concept is easy
to explain once we have constructed a translating device from group ex-

tensions to module theory (§5).

§4, Comparing relation modules

If (Rl |F) = (F2 |F), then obviously Rl = RQ. That the converse
is not always true follows from results already mentioned in the last
section. If G is cyclic of prime order p = 5, then there are sp-1)
non-isomorphic minimal free extensions but, of course, the trivial module
Z 1is the only minimal relation module.

We are here using 'minimal’ in the expected sense: for any finitely
generated group G, a free presentation R>—= F = G is called minimal
if d(F) = d(G). Then the corresponding extension (R lf) is a minimal

free extension and R is a minimal relation module.

For the rest of this section let us assume our group G is finite.

It follows from (3) that if _Rl, Rz are non-minimal relation modules
arising from the same free group F, then R1 = R2. Further, if Rl, R2
are minimal and gap(G) > 0, then we still have ﬁl = ﬁz'

However, the non-vanishing of the generation gap is by no means a
necessary condition for minimal relation modules to be isomorphic.
Williams [25] observed that whenever the Jacobinski cancellation theorem

[14] can be applied (and the possibility of this depends on the construction
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in §5), then two minimal relation modules are isomorphic. Explicitly,

this gives

(%) The minimal relation modules f{l, _R2 are isomorphic if
(i) d(G) = 3 or ZG satisfies the Eichler condition and (ii) ZG is a

direct summand of the direct sum of n copies of fil, for some n,

The restriction implied by condition (i) is not serious: the Eichler
condition holds if G does not have as homomorphic image a sub-group
of the non-zero real quaternions that spans the quaternions over R; and
this rules out a small family of explicitly known groups ([28], §2.6).
Condition (ii), however, is troublesome. Williams [27] has recently
verified this for the groups An, Sn (n=5), PSL(n, q) (@ #2 and
(n, @) # (2, 3)). These groups all satisfy condition (i) and hence have a
unique isomorphism class of minimal relation modules. None of these
groups are covered by (3) since they all have gap 0 (because every 2-
generator group has gap 0: e.g. [9]p. 217).

These facts raise the possibility that perhaps minimal relation
modules are always isomorphic. But this has recently been shown to be
not so by Dyer and Sieradski [18]. They produce a lower bound, which
is often greater than 1, for the number of isomorphism classes of mini-
mal relation modules of any (finite) group G satisfying d(G) = d(G/G').
It may be relevant to remark that this condition on d(G) implies
gap(G) = 0 (cf. Lecture 3 or [9]).

The methods of Dyer and Sieradski have been refined by Peter Webb,
who calculates the exact number of isomorphism classes of minimal rela-
tion modules when G is abelian. We describe his result. Take o:A-=G
to be a presentation with A free abelian of rank d(A) = d(G). Let £ be
the subgroup of Aut G consisting of all those automorphisms induced via
a by automorphisms of A. (This subgroup does not depend on «.) For
each integer k prime to IGI, write my for the automorphism g g .
By work of Swan [20], the ideal

Ik)=k ZG + ( } g)Z

geG
is projective; and if S is the set of all m, S0 that I(k) is a free module,
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then S is a subgroup of Aut G. Webb's formula states that the number

of isomorphism classes of minimal relation modules of G is (AutG:QS).

§5. A link to module theory

Recall that the augmentation ideal g of G (strictly of ZG) is the
kernel of the map ZG = Z defined by taking coefficient sums:

2 mg; > m,.

This is a two-sided ideal of ZG.

We adopt the convention that a small german letter shall denote the
augmentation ideal of the group given by the corresponding capital latin
letter.

Let N>—>E U G be an extension. Then 7 extends by Z-linearity
to a homomorphism 7 : ZE = ZG, whose kernel is nE, the right ideal
(and therefore two-sided ideal) generated by n . Restricting 7 to the

augmentation ideal e¢ of E gives
(5) 0=mnE/en = e/en =g =0,

which is plainly an exact sequence of G-modules. It is easily proved
(cf. [8], p. 6) that

(6) nE/en = N/N',

as G-modules. (The isomorphism is the obvious one: (n-1)+en +nN',
n €N.) '
We are now prompted to introduce a new category (g), whose objects

shall be the G-module extensions
AlM) : A>>M g

and morphisms shall be diagrams of the following type:

(A |m) A— »M— g
(a|p) l a ul l=
A M) Ayr—M—»g
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If A>—>E = G is an object in ((—}), we use (5) and (6) above to
construct the object

A>> ¢e/ea-=g
in (LJ).

There is also a functor in the opposite direction. Given

%o

A>—> M = g , we can form the group extension

This yields a functor @ : () = ().

A>—>GlM ib»c;tg,

where GLV denotes the split extension of a G-module V by G. The

homomorphism ¢ is given by (g, m) = (g, m¢o). There exists a homo-
morphism ¥ : G = Glg definedby g (g, g - 1). I E =Gy¢ ', then
A>—F %, G is an object in (g). We now have a functor ¥ : (g) - (9).

(7)  The functors &, ¥ determine a natural equivalence between

the categories (g) and (g).

Let QG denote the category of pairs (A, x), where A is a G-
module and X € HZ(G, A). A morphism o : (A, x) = (Al, xl) is a
G-module homomorphism o : A= A1 so that xHZ(G, a) = X . The
classical extension theory of groups provides a functor 1"l : (_Q) - QG,
which is surjective (full and representative). Now HZ(G, ) = Extlze(g, )
and the extension theory of modules then gives a surjective functor

1"2 : (_g_) - QG. Moreover the following two triangles commute:

3 ;
& < > &)
¥
\ / T
1 2
e}

Since a certain amount of group theoretic and module theoretic infor-
mation is lost by applying Fl and F2, respectively, it follows that the
direct link provided by (7) is better than the indirect one via %G (apart
from being considerably easier). (For details and further information
cf, [7], §9.1 and [12]. My attention was recently drawn to an early paper
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on these matters by R. H. Crowell [2].)

We may use (7) to translate extension theoretic concepts, problems
and arguments from G to g and vice versa. Of course, the dictionary
can be used only for constructs that are invariant under a natural equiva-
lence of categories.

We promised a comment about the proof of (3) (§3). If (ﬁl [F),

(R2 |F) are two free extensions, then (5) and (6) yield two presentations

of g:
(8) 'Rin/fti-»g, i=1, 2,

These are actually free module presentations of g : for f isa free
module over ZF, freely generated by {xi -1, i €I}, where {xi, iel}
is a set of free generators of F; whence f/fri is G-free. Schanuel's

lemma now shows that

R ez 2R e (20)%P.
Under suitable hypotheses (such as (4)(i)), we can cancel and obtain
Rl = Rz' The basic point of the proof of (3) is to show that a given iso-
morphism between Rl and R2 can be adjusted to become an isomorphism
of the module extensions (8).

A second outstanding point concerns the question of genus. Let G
be finite and recall that a ZG-module A is called a lattice if the Z-
module structure of A is that of a finitely generated free Z-module.
Two ZG-lattices A, B are in the same genus if they are locally isomor-
phic: i.e. A® Z(p) =B® Z(p) for all primes p (Z being the local
ring at p). Given two extensions (A1 fMl), (A2|M2) in (3), where
Al, A2 are ZG-lattices, then automatically Ml, M2 are also lattices
(because g is one). We say (Al fMl), (A2 |M2) are in the same genus if,

for each prime p, there exists an isomorphism of extensions:

M RZ, . —»» g Z

(@) 1 I (p)

(p)

A1 R Z ®)

lz

A ®Z
2
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Two extensions in (—q) with lattice kernels, are then said to be in the
same genus if their images in (ﬁ) are in the same genus. (Using (7),
this can be expressed purely group theoretically.) We have now attached
a meaning to the assertic. in the last paragraph of §3.

An example of a concept that does not translate satisfactorily is that
of freeness. An extension (A|M) is free in &) if, and only if, M isa
free ZG-module. The image of a free extension (R|F) in (_Cf) is indeed
a free extension (R | f/fr) in (g), but of a rather special sort: | /f:
has a set of free generators {xi, ie€l} sothat {xiw + 1} is a generating
set of G (where 7 is §/fr = g). A. J. McIsaac has proved that if G
is finite abelian, then every free extension in (g) does indeed have this
additional property and therefore, in this case, all free objects in (_g_) do
have free images in (g). It would be of considerable interest to know
for what other classes of groups this assertion is true. It is definitely

false for all groups of positive generation gap.

II: PROJECTIVE EXTENSIONS AND THE DECOMPOSITION PROBLEM
§6. The decomposition problem

In the last lecture we were primarily interested in the free extensions
®R|F) in (Q)_ We turn now to the projective extensions (projective objects)
These are defined in the usual way by the completion property for triangles:
(A IE) is projective if, and only if, for every diagram

(AlE)
l (a|o)
(a'lo')
aE) ———@a,lE)

with (a' fcr') an epimorphism, there exists a morphism (a"fo"):(AlE) -
(A1 fEl) so that (oz"fa")(a' Io') = (alo). (The morphism (o' lo') is an
epimorphism if, and only if, &' (or equivalently o¢') is surjective. ) -(Cf.
[7], chapter 9 and [11] for details on these and the following matters. )

It is easy enough to describe the projectives. In (g), the extension
A IP) is projective if, and only if, P is a projective ZG-module. In

(9), the extension (AIE) is projective if, and only if, there is a free
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extension (R li“_), a module decomposition R = A @ C so that F splits
over C andthen (R/C|F/C)= (A|E). It follows automatically that C

is a projective ZG-module.

ol
|

1 A

A nicer way of expressing this is to use the observation that (g)
has finite products. In fact, if (A IE) is a given extension and
A=A ®A, then @alp)y=@/m [EA)D (A/A, |E/A).

Thus we can state

(9) The group extension (A fE) is projective if, and only if, there

exists a ZG-module C so that

AalE)yn(clc] @

is a free extension, Moreover, C is then a ZG-projective module.

The problem we propose to study is the following: Is every factor-
isation of a free extension necessarily of the form (9)? Explicitly, if

RIP)=@ [Epn@Q,lE),

does one factor have to be a split extension with ZG-projective kernel ?
In view of (9), this is a necessary and sufficient condition for the other
factor to be a projective object in (g).

We can rephrase the problem in terms of the pair category QG
introduced in §5. If x is the cohomology class of the extension (R IF)

and
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® 0=@A, x)1A,),x)

(so that R = A1 ® A2 and X5 is the image of X under the map induced
by the projection R -»Ai), does it follow that one of x , x is 0%

For the rest of this lecture we shall assume G is a finite group
and that all extensions are finitely generated. Since H*(G, projective)=0,

our problem is now equivalent to the following:

(10) If R is a relation module and R = A1 ® A2, must then one of

Al, A2 be projective ?

Our method of tackling this question proceeds by way of an important
class of lattices, which we call Heller modules (§7) and which enable one
to study decomposability problems in an integral setting. The Heller
property for Z leads us to the prime graph of a group (§8), an object
that is often of interest in abstract group theory. In this way we shall
obtain (in §10) an internal structural condition for answering (10). In the
final lecture we shall find that these results also provide indecomposa-

bility criteria for minimal relation modules.

§7. Heller modules

The first observation to be made about (10) is that this is really a
problem only about the genus class of R. For let us call a property of
ZG-lattices a genus property if, whenever a particular lattice has the
property, then all lattices in the same genus also have it. Then the
property of being projective and that of being indecomposable are both
genus properties; and so is the property of admitting a non-projective
decomposition: L = L1 5 L2 is a non-projective decomposition if neither
L, mor L_ is projective. (Cf., e.g., [8], §5.1.)

Suppose R = Al @ A2 is a non-projective decomposition of the
relation module R. We show that the augmentation ideal g 'stably
decomposes’ (in a sense that will become clear) in a similar way.

For any ZG-module M, let M* = HomZ(M, Z), the Z-dual of M

(with action 9g: m = mg_le). If we take free presentations
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n,
B, > (ZG) 1-»A;«, i=1, 2,

and dualise, we obtain
n,
A >—> (ZG) Lo B}

(since (ZG)* = ZG), whence

n * * —
A1 €BA2>—>(ZG) -»Bl EBBZ, where n n, + n,

But
= k
R>— (2G)™ = g,

by (8), §5 (where k is the rank of the ambient free group to R) and
therefore Schanuel's lemma yields

a © (ZG)" = BX ® BY @ ze)* .
Since Ai is not projective, neither is A;‘ nor Bilk. Consequently

g ® (ZG)" admits a non-projective decomposition.

Definition. TLet K be any commutative ring and M a KG-lattice
(by which we mean a finitely generated KG-module which is K-projective).

We call M a Heller module if any decomposition
M® (KG)" =M &M

(for any n= 0) always implies M1 or M2 is KG-projective.

Thus we have proved that if R is not a Heller module, then neither
is g.

If K is a field (so that the Krull-Schmidt Theorem holds), then M
is a Heller module precisely when the uniquely determined largest non-
projective direct summand of M is indecomposable. The Heller property
is here a generalization of indecomposability. But it is in situations where
the Krull-Schmidt Theorem fails that the Heller property really comes into
its own as a concept for tackling decomposability problems. We shall see

this presently, but for the moment we remark only that if A is a ZG-
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lattice and A =A' ® P is a decomposition so that P 1is projective and
A' has no projective summand (whence A' is determined by A to within
genus), then the Heller property for A implies A' is indecomposable
([8], §8.1; also §12 below).

In all situations, the usefulness of the Heller property depends on
the following simple fact (whose proof, with obvious changes in notation,

is the argument we had above for R and g ):

(11) I M>—P = N is an exact sequence of KG-lattices and P is
KG-projective, then M is a Heller module if, and only if, N is a Heller

module.

We can now state

(12) There exists a relation module which is not a Heller module if,

and only if, g is not a Heller module; and this holds if, and only if, Z

is not a Heller module.

Hence, in partial answer to (10), no relation module has a non-pro-
jective decomposition if, and only if, Z is a Heller module. (This uses
the fact that a direct sum of a relation module and a free module is

another relation module: cf. the beginning of §10 below. )

§8. The prime graph of a finite group

(The material which follows in the rest of this lecture is based on
[10] and [8], Lectures 8, 9, as well as on unpublished work of Peter
Linnell.)

Suppose A =M © N is a decomposition of an arbitrary ZG-lattice
A. If we assume A /A is a Heller module, then one of the summands,
say M/pM, is FpG—projective. This implies (by standard theory) that
M(p) =M® Z(p) is Z(p)G—projective.

Definition. The ZG-lattice A is a modular Heller module if A /pA

is a Heller module for all prime numbers p.
It is obvious that Heller's lemma (11) remains true for modular

Heller modules. Since Z is clearly a modular Heller module, so are all
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augmentation ideals and all relation modules.

For any lattice A, let m(A) denote the set of all prime numbers
p so that A(p) is not projective. Notice that 7(A) = 7(G) (the set of
all prime divisors of the order fGl of G); and that A is projective if,
and only if, 7(A) is empty.

The following result is an elementary consequence of the above

definition, notation and remarks:

(13) I A is a modular Heller module and A =M © N, then

7(A) = 7(M) U 7(N) (disjoint union).

It turns out that Z is a Heller module for every cyclic group.
Suppose that Z is not a Heller module for G andthat A =2Z & (ZG)t
has a non-projective decomposition A =M @ N, We assume now that G
contains a cyclic subgroup C of order pq, where p € 7(M), g € m(N).
By (13), p #q. Since Z is a Heller module for C, one of MIC, Nlc
is C-projective. If it is, say MIC, then M(p) is still projective (over

Z
(p)
which contradicts p in #(A l C). Similarly we obtain a contradiction if

C) but so also is N(p) because p ¢ 7(N)). Then A(p) is projective,
NIC is projective. The conclusion is that G cannot contain any cyclic
subgroup like C.

We are now prompted to make the following

Definition. The prime graph II(G) of the group G is the graph
with vertices the set 7(G) and in which p, g are joined by an edge if,
and only if, there exists an element in G of order pq. A subset of
7(G) is called connected if, and orily if, it is contained in a connected
component of II(G); it is called closed if, and only if, it is the vertex

set of a union of connected components.
A small extension of the argument leading to (13) gives the following

useful result.

(14) ([8], 8.17) Let A be a modular Heller ZG-module, 7(A) a
closed subset of 7(G) and assume that for every edge pq in the subgraph

(g II(G)) determined by (A), there exists a cyclic subgroup C of order
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pg so that AIC is a Heller module and ﬂ(AIC) =1{p, q}. If

A=A ©... 04,

then each n(Ai) is closed and 7(A) =0 n(Ai). Moreover, if n(Ai) is

also connected, then Ai is a Heller module.

Here are some examples of the connectivity of II(G).

(@) If G has a non-trivial centre, or if G=H X K with H, K
non-trivial, then II(G) is connected.

(o) Consider Sn, the symmetric group of degree n and let p
be the largest prime =n, If p< n-1, then (p +1, p+ 2) commutes
with (1, ..., q) for every ¢ in n(Sn), whence 2 is connected to all
primes, But if p=n- 1, then p is isolated. Hence, if n = 3, H(Sn)
is connected if, and only if, n is not of the form p or p + 1.

Similarly one sees that if n = 4, H(An) is connected if, and only if,
n is not of the form p or p+1 or p+ 2.

(e) ([8], 8.18) If G is soluble, then II(G) is connected if, and
only if, G is not a Frobenius group or a 2-Frobenius group. (We call
G a 2-Frobenius group if there is a normal series 1< H< T < G so that
T is a Frobenius group with kernel H and G/H is a Frobenius group
with kernel T/H.)

In the disconnected case of a soluble group, there are precisely
two connected components. It seems that no groups with more than 6

components are presently known.

§9. The main theorem

We come now to the main theorem. This ties together the various

concepts we have introduced.

(15) The following conditions on the group G are equivalent:

(i) II(G) is not connected;

(ii) g ® ZG has a non-projective decomposition;

(iii) zZz & (ZG)2 has a non-projective decomposition.

Moreover, g decomposes (necessarily non-projectively!) if, and

only if, Z © ZG has a non-projective decomposition.
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The implication (iii)= (i) is immediate from (14); (ii)= (iii) and
the last part of the theorem follow from [10], Lemma 3,2, The implica-
tion (i) = (ii) is due to Linnell. We make an exceedingly brief comment
on the proof.

Assuming (i), let #(G) = 7 U ', with 2, %' both non-empty and
closed. If g ® ZG were to admit a non-projective decomposition
A ®A', with m(A) =, m(A') = 7', then the characters of A and A' are
easy to write down explicitly. Let x and x' be two class functions
defined precisely like such characters (if they existed). The crux of the
proof of (i)= (ii) is to show that X and x' actually are characters and
that they are the characters of Zn,G-projective and ZﬂG-projective modules
respectively. This depends on Swan's 'realization theorems’ in [21].

The problem left open by (15) is whether the non-connectivity of
II(G) is sufficient to force g itself to decompose, This is certainly
correct in various classes of groups, among which are all soluble groups
and all Sn, An. However, inall cases where it is known to be true, a
particular decomposition of g can be established by using the existence

of a special type of subgroup:

Definition. A subgroup H of G is isolated (in G) if H is a proper
subgroup, H n g_ng =1 or H forall geG andfor all h#1 in H, the

centralizer of h in G is contained in H.

(16) ([10], Theorem 1) If G contains an isolated subgroup, then

g decomposes.
Perhaps the existence of an isolated subgroup is equivalent to the

decomposability of g .

§10. Decomposition of relation modules

We return finally to our original question (10) about relation modules.
Suppose R>—>F LN G is a free presentation of rank k: i.e.

d(F) = k. Letus call k the ambient rank of the relation module R.
If 1. is free of rank 7, then the free presentation (cf. (1), §2)

7 * (collapse) : F1 =FxL—=-G
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has a relation module isomorphic to R & (ZG)Z. By (4), §4, every rela-
tion module in F1 has this form provided only that { > 0 when k = d(G).
But all relation modules of fixed ambient rank lie in a single genus class
(cf. end of §3) and consequently, if the relation module R of ambient
rank k has a non-projective decomposition, then so has every relation
module of ambient rank = k.

By (15) and (12), we know that there exists a relation module with
a non-projective decomposition if, and only if, II(G) is not connected,

Hence we have

(17) There exists an integer k so that every relation module of

ambient rank =k has a non-projective decomposition if, and only if,

II(G) is not connected.

The least such integer k can be proved to be at most ZdG(g).

It may reasonably be conjectured tobe 1 + dG(g): this would imply that
if non-projective decompositions occur at all, then they necessarily
happen for all non-minimal relation modules. (This is indeed the case
for soluble groups. )

Minimal relation modules, however, need not always have non-
projective decompositions when the prime graph is non-connected. Sup-
pose G is soluble, We have seen (§8, example (c)) that II(G) is non-
connected if, and only if, G is a Frobenius group or a 2-Frobenius group.

Contrast this with

(18) (8], 9.1) If G is a Frobenius group, then the minimal
relation modules have non-projective decompositions if, and only if, the

Frobenius complements of G are cyclic.

One can also pinpoint the 2-Frobenius groups whose minimal relation
modules have a non-projective decomposition. This is not the class of
all 2-Frobenius groups as was erroneously asserted in [8], (9.1). Details
of the correct result and rectifying the error in [10] will appear (in a
paper by Roggenkamp and Gruenberg) in the Proceedings of the London
Mathematical Society.

We shall see in the next lecture that for soluble groups, the existence

of a non-projective decomposition of a minimal relation module is equiva-
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lent to ordinary decomposability.

It is possible to give a criterion for the non-projective decomposa-
bility of minimal relation modules valid for all groups of zero generation
gap. Let us say that the decomposition A = B & C of the KG-lattice A

is additive if dKG(A) = dKG(B) + dKG(C).

(19) If gap(G) =0, then minimal relation modules of G have non-

projective decompositions if, and only if, g(G) ® Z(G)G has an additive

non-projective decomposition.
(Here Z

=n
pen(G

© Ze 2 S @)

We shall meet a more satisfactory form of this result in the next
lecture (cf. (25)). Unfortunately it is rather difficult to check that a de-
composition is additive. It would be very interesting to have a character-

ization internal to G of the existence of a decomposition as in (19).

II: MINIMAL PROJECTIVE EXTENSIONS
§11, The construction of minimal projectives

Our concern in the last lecture was the possibility of decomposing a
projective extension in (E) so that neither factor is projective, We found
that if G is finite, there is no chance of this happening if the prime graph
of G is connected. What about factorizations in which we do have a pro-
jective factor ?

Let (A ]E) be a projective extension and assume

(200 AlE)=(@ [E)I(P]S),

where (A1 |E1) is also projective. Then (PIS) must be a split extension
and P is ZG-projective. (Compare this with §6, (9): the proofs are

the same: cf. [7], §9.) It may happen that (A1 lEl) factorises similarly
and we may continue until, perhaps, we reach a projective factor where

this process terminates. We call such an extension a minimal projective

extension. Thus, the projective extension (A|E) is minimal if, and only

if, any factorization (20) (with (A1 lEl) projective) implies P = 0.
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The group-theoretic procedure for constructing minimal projectives
is to start with a free extension R fF). (Every projective extension

arises as a factor in one such: (9), §6.) We look for a decomposition
(21) R=A P,

where F splits over P and A contains no direct summand over which
F splits. Then (A IT/P) is a minimal projective extension (and they all
arise in this way).

We leave to one side the question whether minimal projectives always
exist. They certainly do if a relation module satisfies the ascending chain
condition on projective direct summands. In particular, since relation
modules embed in free modules (cf. (8), §5), if ZG is a right noetherian
ring, then minimal projectives exist.

When G is finite, they certainly exist. For the rest of this lecture
G will again be a finite group. In this situation, projective modules are
cohomologically trivial. Hence the above construction of minimal pro-
jectives reduces to finding decompositions like (21) subject to P being
ZG-projective and A having no projective direct summand.

A natural place to look for minimal projectives is as factors of
minimal free extensions (cf. (21) above). But it is not true that every
minimal projective extension arises like t};is. Williams [26] has ex-
hibited a group G having a minimal projective (A[|E) with d(E) > d(G).

§12. Lattice cores and the presentation rank

If L is a ZG-lattice, then a projective excision of L shall be a

decomposition L = L' ® P, where P is projective and L' has no pro-
Jective direct summand. We call L' an L-core.

There may be many projective excisions, but all L-cores lie ina
single genus class; and the projective parts are also all in one genus.
Since QP is QG-free (by a theorem of Swan [19]), say

QP = Q6),

therefore k is an invariant of L, called the projective rank of L and
written pr(L). (Cf. [8], Lecture 5 for what follows. )
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If R is a relation module, we shall call an R-core a relation core

of G. The discussion in the last section has effectively established

(22) The projective extension (A |E) is minimal if, and only if,

A is a relation core of G.

(23) The relation cores of G form a single complete genus class.

In contrast to this, we mention that there are situations when the
relation modules of some fixed ambient rank do not constitute a complete
genus class. (We know that they all lie within one genus class, )

A natural expectation is that minimal relation modules are relation

cores. This is often true but not always.

Definition. If R is a minimal relation module, we call pr(R)

(which is an invariant of G) the presentation rank of G and write if
pr(G).

Minimal relation modules are relation cores if, and only if,
pr(G) = 0. Hence, if Z is a Heller module and pr(G) = 0, then every
minimal relation module of G is indecomposable.

Let R IF) be a minimal free extension. The corresponding relation

sequence (cf. (8), §5) is then
R>—> (ZG)C1 -+ g, where d=d(G).

If d'= dG(g), we have a free module extension

A>—> (ZG) Y =y,
Now

A®@Z6) >R o @)Y

)

- ' —
d-d is in the same genus as R (local cancellation

whence A ©® (ZG)
being possible). It turns out that d' is also the minimum number of

module generators of 8 = 9 ® Z(G)’ where (as in (19), §10), Z(G) is
the ring of all rational numbers a/b, with b prime to |G| (We return

to this point below in §14.) A consequence is that A has no projective
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-d
direct summand. Hence A & (ZG)d d is (within genus) a projective

excision of R and we coneclude (using also (23) for (ii))

(24) (i) (Roggenkamp [17]) pr(G) = gap(G);
(ii) A is a relation core of G.

We are now in a position to state a version of (19) (§10) that is valid

for all finite groups:

(25) The relation cores of G are decomposable if, and only if,

g(G) @ Z(G)G has an additive non-projective decomposition.

§13. The generation gap function

The generation gap (or equivalently, in view of (24), the presentation
rank) is a function whose behaviour is rather erratic. We survey some of
the known facts about it. (Cf. [8], Lecture 6 and also [1], [9].)

(26) [9] In each of the following situations G has generation gap 0:
i dG) =2

(ii) there exists a soluble normal subgroup N so that gap(G/N)=0
(iii) there exists a normal subgroup N so that G/N is soluble and

d(G) = d(G/N). i

The proof of (i) is very simple indeed. The result is clear if G is
cyclic. Assume that d(G) = 2 and that gap(G) > 0. Then a projective
excision of R (a minimal relation module) is R = A ® P, with P pro-
jective of rank k> 0, whence QR = QA ® @G)*. By (8), §5, QR =~QQG.
Hence k=1 and A = 7Z and so (cf. (24)(ii)) Z(G)H Z(G)G - 9(G) is
exact. Therefore G has projective period 2 and thus is cyclic, contrary
to hypothesis.

Note that (ii) implies that all soluble groups have generation gap 0;
and that a special case of (iii) is d(G) = d(G/G").

To produce examples of groups with non-zero generation gap, we
use direct products, Write G(r) =G Xx.,.. X @G, with r factors.
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(27) (Cossey-Gruenberg-Kovacs [1])

dG(r)(g(r)) = max{dG(g), rd(G/G") }.

It follows that if G is perfect (i.e. G = G') then gap(G(r)) in-
creases exactly like d(G(r)); and this latter function (at least for simple
G) can be studied using methods developed by Hall in 1936 [13]. When G
is not perfect (G > G'), we apply a theorem of Wiegold [24] that
d(G(r)) =rd(G/G") for all r > 2d(G), to find that gap(G(r)) =0 for
these values of r. Thus we have

(28) 1lim gap(G(r)) =0 or « accordingas G#G' or G=G"
T=>c0
The most useful criterion for deciding whether a group G has non-

zero generation gap is representation-theoretic. We know (from (24))

that gap(G)> 0 if, and only if, any one minimal relation module R has
a non-zero projective direct summand. This is equivalent to the local
statement: for each p € n(G), ]FpG is a direct summand of R/pR.
Gaschitz [5] has given an explicit description of the modules R/pR and
hence, by using this, we can check whether or not each projective inde-
composable ]FpG—module occurs in R/pR at least as often as in the group

algebra FpG. The resulting criterion is the following:

(29) gap(G) > 0 if, and only if, for all p € 7(G) and all irreducible
F_G-modules M,
p o mocules

1 G)-1-
1@, ]| = |m|d@-1-Gy
where
1 if M#F_,
Eap = P
M 0 if M=F_.
p

It should be noted (and this is an elementary fact) that
1 -
', m| = [M|9@-Cy

for all G and all irreducible M.
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If we assume that d(G) > d(S) for every composition factor S of
G then (29) remains true if M is restricted to those irreducible modules
which arise as split chief factors of G ([9], (2.1)). Since all presently
known simple groups need at most 2 generators and gap(G) > 0 is only
possible if d(G) = 3 ¢(26(i)), it follows that the restriction d(G)> d(S)
is probably not serious. Nevertheless, even in this form, the criterion
is still essentially representation theoretic.

Is there any way of expressing gap(G) > 0 interms only of the
internal structure of G? We describe an attempt (as yet unpublished) in
this direction.

First some notation and terminology. If S is a composition factor
of G, we shall write AG(S) for the automorphism group induced on S

by NG(S), the normalizer of S in G:
AL(S) = N4(5)/C5(8);

one calls AG(S) the automizer of S in G.

Let M be an irreducible module which occurs as a split chief
factorof G. If C = CG(M), the centralizer of M in G, then we can
find a chief series of G through C so that all split occurrences of M
lie together immediately below C: say C/D = M(k) and D contains no
split occurrence of M. Let us call k the M-width of G.

Suppose next that G/C is monolithic. This means that G/C has
a unique minimal normal subgroup, say L. We assume further that L
contains a composition factor whose automizer A (in G) has anirre-
ducible module N so that

M=~N T 2 (induced module)

and EndG(M) = EndA(N). In these circumstances we shall say that M is

monolithically induced.

(30) (Cossey-Gruenberg-Kovacs) Assume that d(G) > d(S) for
every composition factor S of G. Then gap(G) > 0 if, for every split
abelian chief factor M of G of width k > 0, the following holds:

if M is not monolithically induced, d(G) - &, > dG(M(k));
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if M is monolithically induced, say M =N T 2, where A = AG(S),

then

(G : N4(8)(@(@) - 2) = an® 1 4y -1,

The conditions of (30) are also necessary for gap(G) > 0 if the
automizer of every non-abelian composition factor of G can be generated

by 2 elements.

§14. Swan modules

We have already mentioned that dG(g) = dG(g(G)) (cf. the argument
leading to (24), §12). This is also relevant to the formula for d I,)(g(r))
in (27), §13. What is behind this equality ?

Let L be a ZG-lattice. By standard theory (e.g. [8], 7.1) one can

!

prove that

(31) dG(L =max{dG(L/pL); all p € 71(G)}

@)

where, of course, L(G) =L® Z(G); and Swan [22] proved that

(32) dg(L) =1+ dg(L ).

We call L a Swan module if, in fact, dG(L) = dG(L(G)).

Results (31) and (32) illustrate a phenomenon of frequent occurrence.
The local information about a lattice can often be tied together in a nice
form over the semi-local coefficient ring Z(G) and this is usually not
hard. But the change from Z @) to Z can present formidable difficulties.

Another illustration of this concerns the notion of genus. Two ZG-
lattices L, M are in the same genus (i. e. are locally isomorphic) if,
and only if, L(G) = M(G)' This fact is often very useful.

Being a Swan module is not a genus property. For let I be a non-fre

projective right ideal in ZG. Then I is free (because all projectives

(G)
over Z(G)G are free) and its projective rank must be 1 (cf. §12). Hence
I(G) = Z(G)G’ i.e. I and ZG are in the same genus. By (32), dG(I) =2.

Since ZG is indecomposable, I cannot be an epimorphic image of ZG,

98



whence dG(I) = 2.
Swan discovered a useful genus property that ensures a lattice is a

Swan module. We define this property (S) as follows:

(33) Definition. The ZG-lattice L has (S) if, and only if

k .
k = dG(L(G y=2 and if C>— (Z - L(G) is an exact sequence of

(G

Z (G)G—lattwes, then QC contains a copy of every irreducible QC-module

except possibly Q.

(34) (Swan [22], Lemma 4.4) If the ZG-lattice L has (S), then L
is a Swan module.

This result is the basic tool for proving (details in [8], Lecture 7)

(35) All augmentation ideals, all relation modules and all relation

cores are Swan modules.

As a consequence we have two noteworthy facts:

(36) ([8], 7.9) (i) If A, B are relation cores, then dG(A) = dG(B)
(i) d (ﬁ d(F) is an invariant of G ((R|F) being any free ex-
tension in (G))

§15. Augmented partial Euler characteristics
If R is a relation module of ambient rank k then (cf. (8), §5)

(ZG — ZG—» Z

e

is exact; and if A is a relation core, then we can find a projective ZG-
module P (of projective rank pr(P) = dG(g)) so that

is an exact diagram. Thus g, R, A occur as kernels in projective resolu-
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tions of Z. We have seen (cf. (35)) that they are all Swan modules. Is
this accidental or do all kernels in all resolutions have this property ?
This question was answered by Swan in [22]. We survey his results.

Choose a projective resolution of Z:

€
———»P———» ——P ——» Z

1(1/ M/

and abbreviate this as (P, M) or (P). We assume P0 =ZG and € is
the unit augmentation (so that M0 =g).
Now we define augmented partial Euler characteristics as follows:

v (P)=pr(P)-pr(P_,)+...+ (—l)npr(PO);

un(G) = inf{vn(P); all projective resolutions (P) };

un(G) = inf{vn(P); all free resolutions (P)}.

A projective resolution (P) is called minimal if vn(P) = vn(G) for
all n=0; similarly, a free resolution (P) is called minimal if
Vn(P) = un(G) for all n= 0.

Two resolutions (P), (P') are said to be in the same genus if they

become isomorphic when tensored with Z(G) (cf. §14).

(37) (i) Minimal projective resolutions exist and any two such are

in the same genus. Moreover, (P, M) is minimal if, and only if,

Pr(Pyyy) = dg(My Gy

for all i= 0.
(ii) Minimal free resolutions exist and any two are in the same

genus.

Since we know that g 1is a Swan module, it follows that

v, (@) =p (G) =d;(g) - 1.

Also (and here we use (36)(ii)) we have
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v,(G) =1, (G) = dG(R) - d(F) + 1.

Let (P, M) be a minimal projective resolution, It is then possible
to construct a new minimal projective resolution (P', M') so that P1'<
ko1 € (S) (cf. (33)). Moreover, if M2m+1 # Z, then
it can be proved that M and M m have the property (S). Note

2m+1 2
that the condition M2m = Z is equivalent to G having periodic cohom-
ology of period dividing 2(m + 1).

is free whenever M

(38) If G is cyclic or does not have periodic cohomology, then

there exists a minimal projective resolution which is free (and therefore

minimally free). All the kernels in this resolution are Swan modules,

When G has periodic cohomology of minimal period ¢, then Swan
showed in 1960 [20] that G has a free period lq: this means that there
exists a free resolution (E, K) so that Ki = Z forall i +1=0(modlqg).
Recently C. T. C. Wall [23] proved that I =< 2; and it seems possible*
that Z =1 always. Inany case, Swan's work [22] yields

(39) Let G have minimum projective period q > 2 and minimum

free period lq. Suppose (E, K) is any minimal free resolution of Z.

Then Ki is a Swan module for all i except when i satisfies

i+ 2=0(modq) and i+ 2 Z 0(mod Q).

§16. The presentation deficiency of a direct power

Finally, we return to a problem stated in the first lecture (end of
§1): can we ever have dG(ﬁ) < dF(R)?

We have seen that vz(G) = dG(R) - d(F) + 1. In comparison with
(27) we state

(40) I H (G, Z)=H,(G, 2)=0, then v G") = v (G X G) for
all r = 2,

If the homology conditions fail, so that G is not perfect or the

Schur multiplier of G is non-zero, or both, then lim v, (G(r)) = o, This
is straightforward. ree

* No longer. See problem A3,
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Theorem (40) has an interesting consequence for relation cores.
Let a_ denote the minimum number of module generators of a relation
core of G(r). By (36) (i), this is independent of the particular relation
core chosen. Now
(r)y _ (r)
aI‘ - dG(r)(g - V2 (G ) - 1-

(r)) =d~(g), by (27), and therefore

Assuming G is as in (40), d (r)(g G
G

a =a forall r=2,
T 2

There is a possibility that (40) may be used to construct examples
of groups G for which dG(_R) < dF(R). We end our account with two
suggestions in this direction.

For each s =1, let R_>>F_ - G pe a minimal free presenta-
n
tion. If G isa perfect group, then d(GZ ) =d(G) + n (e.g. [8], 6.18).

It follows now, using (40) that

i ® ):u(GxG)—1+d(G(2n))
G(zn) oM 2

A

_Vz(GXG)'1+d(G)+n'
Hence the problem is to prove that

dF R )> v (GXG)-1+d(G) + n=constant + n.
n oD 2
2

The second approach uses free products. Let E. =G ... x G
(r factors). There is a natural surjection 7 : Er - G (r) whose kernel
El’f is a free group. By the GruSko-Neumann theorem [15] we have
d(Er) =rd(G). Let ¢ : F = Er be a minimal free presentation of Er
and let R =Ker ¢7. Then

R>—>F - G(r) )
R¢ = E; and thus

dF(R) = dEr(E;'j) =e(r), say.
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Agsuming G to be as in (40), we obtain

dG(r)(R) =v, (GxG)-1+rdG),

a linear polynomial in r, with non-negative coefficients. The question

is whether e(r) increases faster with r than this linear polynomial.
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4 - Arithmetic groups

J.-P., SERRE
College de France
Written by Alan Robinson and Colin Maclachlan

This is a survey of results on arithmetic groups. Only a minimal
acquaintance with algebraic geometry is assumed. Theorems are mostly
quoted without proof: sometimes an indication of the method is given.
There is a substantial bibliography, with a guide to the subjects it covers.

The reader is referred to the sources therein for the proofs omitted here.

§1. DEFINITIONS AND GENERAL PROPERTIES ([9], [26])

1.1. Let G be an algebraic subgroup of GLn, defined over the field Q
of rational numbers. Thus there exists a set of polynomials (with rational
coefficients) in the n’ matrix entries and the inverse of the determinant,
whose set of solutions in any extension E of Q is a subgroup GE of
GLn(E). We call GE the group of E-points of G. The groups GR and
GC are respectively real and complex Lie groups,

We write Gz for GQ n GLn(Z).

Definition. A subgroup I' of GQ is arithmetic if it is commen-
surable with GZ: that is, if T' n GZ has finite index both in I" and in
GZ.

A group T is arithmetic if it can be embedded as an arithmetic
subgroup in GQ for some Q-algebraic subgroup G of GLn. Then any

subgroup of finite index in I' is also an arithmetic group.

Remarks, (1) We admit all subgroups commensurable with GZ,
rather than GZ alone, in order to make the definition independent of the
chosen Q-embedding of G in a general linear group. Thus a linear alge-

braic group over Q has a well-defined class of arithmetic subgroups.
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(2) One can replace Q in the definition by an arbitrary number
field E, and Z by the ring OE of integers of E; but this does not
enlarge the class of 'arithmetic groups'. For let d =[E : Q]; thenan
E-algebraic subgroup H of GLn determines by 'restriction of scalars’
a One can identify GQ with HE’
has finite index in HO ; so that any subgroup I' which is

E

a Q-algebraic subgroup G of GLn

and GZ

arithmetic in HE (according to the extended definition) is already arith-

metic in GQ according to the definition above.

Functoriality (ef. [41], 10.14, 10.20). Let G and G' be linear
algebraic groups over Q, and ¢ : G= G' a homomorphism (defined
over Q). Let ¢Q : GQ-> Gé be the corresponding homomorphism on
rational points. Then:

(a) If I is arithmetic in GQ’ ¢>Q(1") is contained in an arithmetic
subgroup of G&Q; it is arithmetic in G&Q if Coker ¢ is finite.

(b) If I is arithmetic in Gb, ¢él(l'") contains an arithmetic
subgroup of GQ; it is arithmetic in GQ if Ker ¢ is finite.

(Beware that (a) would not be true for 'congruence subgroups', cf,

[43], Sém. Bourbaki.)

1.2 Examples

(1) A finite group is arithmetic.

(2) Let G be the multiplicative group Gm: GLl. Then GQ is
the group Q* of non-zero rational numbers, and GZ is Z* ={+1}. The
arithmetic subgroups of Gm are {1} and {%1}.

(3) Let G be the additive group Ga’ so that G.

E
This group can be embedded in GL2 as the group of upper unitriangular

=E forany E.

matrices (é I), whose defining equations are X, =X, = 1, X, = 0.
Then GZ = Z; any arithmetic subgroup of GQ is a subgroup of Q@ com-
mensurable with Z, so is infinite cyclic.

The class of arithmetic groups is closed under finite products. So
by (1) and (3) every finitely generated abelian group is arithmetic.

(4) Every finitely generated torsion-free nilpotent group I' is
arithmetic. In fact, according to Maléev (cf. Bourbaki, LIE I, II,
Exercices, pp. 82-3, 281-3) there are embeddings T C FQ C PR, where

FQ is a uniquely divisible nilpotent group generated by roots of elements
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of I', and Iy, is a simply connected nilpotent Lie group in which I‘Q

R
is dense. Both FQ and I‘R are unique up to unique isomorphism. With

FR D FQ is associated a Lie algebra with a rational structure

TIR on Q Now PQ can be reconstructed from n Q: it is the set n Q

with the product given by the Campbell-Hausdorff series
1
xy=x+y+ 3[x, y]+ﬁ[x, [x, y]]+...

which terminates by nilpotency. This multiplication law is polynomial,

Q

metic subgroup.

so I' | becomes a linear algebraic group over Q; and I' is an arith-
For example, the nilpotent group with generators a, b and relations
(a, (a, b)) = (b, (a, b)) =1 embeds in GL3 as the group of upper uni-
1 * *
triangular matrices over Z: (O 1 *>

001
(5) Let R be any ring which as a Z-module is free of finite rank.

Then the multiplicative group R* is arithmetic. For let G be the

Q-algebraic group whose E-points are those E-automorphisms of the free
E-module R ®Z
structure: then R*, acting by multiplication on the left, is an arithmetic

E which are linear with respect to the right R-module

subgroup of GQ.
In particular, this applies when R is the ring OK of integers in
a number field K, or when R is an order I in a quaternion field over

K. Therefore OI*{ and I* are arithmetic.

(6) Let
n- 2
f(x) = iilaixi

be a non-degenerate quadratic form over Q. Let SO(n, f) be the associ-
ated special orthogonal group. Examples of arithmetic subgroups of
SO(n, f)Q are studied in Vinberg [56], [57]. Other semi-simple groups
can be used as well. Thus SLn(Z) and SpZn(Z) are arithmetic groups
associated with Q-split forms of SLn, szn'

(7) A finitely generated non-abelian free group is arithmetic:
indeed such a group is isomorphic to a subgroup of finite index in SLZ(Z).

A similar argument, using units of quaternion algebras, shows that the
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fundamental group of a compact orientable surface is arithmetic.

(8) Let X be a simply connected finite complex. Then the group
I" of homotopy classes of homotopy equivalences from X to itself is
arithmetic. This is due to Sullivan [49] and independently to Wilkerson
[61]: it follows from Sullivan's theorem that I'/C is arithmetic for
some finite normal subgroup C ([49](b), 10.3), together with the residual
finiteness of I', which is a consequence of Sullivan's completion theory
([49](a), 3.2). Further, every arithmetic group occurs (up to commen-
surability) in this way.

There are similar results concerning ﬂo(Diff(M)), when M isa

compact simply connected manifold of dimension at least six ([49](b)).

1.3 Properties of arithmetic groups

In this section, I' denotes any arithmetic group.
(1) T is finitely presented ([8]; [41], 13.15).
(2) I" has only finitely many conjugacy classes of finite subgroups

[8].
(3) T is residually finite.
Recall that (3) means that T' is separated for the topology T of

subgroups of finite index. Besides T, it is of interest to consider the

congruence topology Tc’ in which a basis of neighbourhoods of 1 is given
by the kernels of the natural homomorphisms I' C GLn(Z) - GLn(Z /4Z),

q = 1. This topology is independent of the chosen embedding G C GLn;

it is finer than T, and it is obviously separated; hence (3). The

congruence subgroup problem asks whether Tc = T. In general this is

false: SL2(Z) is a counterexample. But in a number of cases (for
instance SLn(Z), n=3, or Sp2n(Z), n = 2), it is known to be true, or
its failure can be measured by a finite group; see [42], [43].

(4) I" has a torsion-free subgroup of finite index.

This follows from (2) and (3), or, more directly, from Minkowski's

theorem [34] that the congruence subgroup of level g of GLn(Z) is
torsion-free if q = 3.

(5) If T is torsion-free, there is a finite complex Y of type
K(T, 1).
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That is, there is a pointed finite CW complex (or, equivalently,
simplicial complex) Y such that m (Y)=T, and ﬂi(Y) 0 for i#1
([14], [40]). Since T is finitely presented, (5) is equivalent to the
existence of a finite free resolution of the trivial I'-module Z over the

group ring Z[T']:

0=-1L =1L - . .=L =L =-Z—-0
n n-1 1 0

where L, = Z[F}Zi, i= 0. Thatis, I isa group of type (FL) [44]. The
Euler-Poincaré characteristic x(I') of I' is defined as x(Y), or equi-
valently as Z(—l)ili.

(6) If I is torsion-free, its cohomological dimension cd(T) is
finite, and H*(I'; Z) is finitely generated [40]. We have

x(1) = 3(-D(T; 2).

This follows from (5), since H*(T') ~ H*(Y) for any coefficient

module.
(7) Hq(F; Z[T]) is zero except for a single value of q for which

it is a free Z-module I [14].

When I is torsion-free, the exceptional value is g = cd(I"). In
this case I' is a duality group in the sense of Bieri and Eckmann [7],
and its dualizing module is isomorphic to I. The module I has infinite
rank in general,

For (8) and (9) below, we assume that the algebraic group G is
simple and that Q-rank(G) = 2.

(8) Every normal subgroup of I' either is of finite index, or is

finite and central.

(9) Every linear representation of I' is almost algebraic.

That is, on some subgroup of finite index in I" it coincides with
the restriction of an algebraic representation of G.
This is due to Margulis [30], [31]; see also [1], [35], [39] for

special cases.

1.4 The quotient GR/F

If T is an arithmetic subgroup of the Q-algebraic group G, then

it is a discrete subgroup of the real Lie group GR' The following
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theorem of Borel and Harish-Chandra gives conditions for the homo-
geneous space GR/ I" to have finite volume, and for it to be compact.
If one of these properties holds for I', then it holds for all commen-
surable subgroups. So the conditions depend only upon the Q-structure
of the algebraic group G.

Let G° be the connected component of the identity in G, and
X(GO) the group of Q-homomorphisms from G° into the multiplicative

group Gm.

Theorem ([13]). Let I be an arithmetic subgroup of GQ'
()  The volume of Gp/T is finite if and only if X(G') = {1].

(b) The following are equivalent:

(i) GR/F is compact

(ii) G has no subgroup isomorphic to Gm

(iii) X(Go) = {1}, and every unipotent element of GQ is

contained in the radical.

Remarks., (1) If G is commutative, the conditions for finite
volume and for compactness are identical.

(2) I G =S80(n, f), then condition (a) holds unless n=2 and f
represents zero (in which case G = Gm) ; condition (b) holds if and only

if f does not represent zero.

Exercises. (1) Deduce Dirichlet's theorem on units from the
compactness criterion above.

(2) Let D be a quaternion field over Q generated by i, j with
i? = a, j2 =b, ji =-ij (for suitable a, b €Q), Show that the arithmetic
subgroups of D* are finite if a < 0 and b < 0; and otherwise are
commensurable with certain discrete subgroups of SLZ(R) having com-
pact quotient.

Generalize to quaternion fields over a number field K.

1.5 Arithmeticity of discrete subgroups of Lie groups

Let L be a real Lie group with a finite number of components, and

I" any discrete subgroup of L, We say I is arithmetic in L if there
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exist a Q-algebraic group G and a Lie homomorphism ¢ : GR - L
such that
(i) ¢ has compact kernel and open image
(ii) qb(l“l) is commensurable with I" whenever 1"1 is arithmetic
in GQ‘
It suffices to check (ii) for a single choice of 1"1. If Fl is chosen torsion

free, the compactness of the kernel implies that ¢>f1‘1 is injective.

Theorem (Margulis [30], [31]). If L is a simple Lie group with
R-rank(L) # 1, and L/T' has finite volume, then I' is arithmetic in L.
In the case R-rank(L) = 1 this is not true. Most Fuchsian groups

give counterexamples in SLZ(R), and interesting examples in SO(n, f),
n =4, 5 6, have been given by Vinberg [55], [56]. Very recently, an
example in SU(2, 1) has been found by Mostow.

§2. ACTION OF T ON THE HOMOGENEOUS SPACE X = K\GR

2.1. If G is a Q-algebraic group as above, the real Lie group GR has
finitely many components. It is known that GR has maximal compact
subgroups, and that any two are conjugate. Let K be one of them; the
homogeneous space X = K\GR is diffeomorphic to Rd, where

d = dim GR - dim K, and GR acts properly on X, (If G is semisimple,
then X is the associated symmetric space.) If I' is arithmetic in GQ’
it is a discrete subgroup of GR’ so acts properly on X: that is, every
compact subset of X meets only finitely many of its translates by ele-
ments of T' (cf. Bourbaki, TG III 32). In particular, the stabilizers

of points are finite subgroups. So, if I" has no torsion, the action is
free and X =+ X/I" is a Galois covering with group I. Since X is a
manifold, so is X/T. Since X is contractible, X/T" is a space of type
K(T, 1); that is, 711(X/l") ~ T and ﬂi(X/F) =0 for i=#1.

This implies that, when I' is torsion-free, the cohomology of the
group I' (with any module of coefficients) is equal to the corresponding
cohomology group of the manifold X/I', In particular, the cohomological
dimension cd(I') is at most d, where d = dim X as above. Since X/T

is a connected d- manifold, we have cd(I') =d if X/T is compact, and
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ed(T) < d if not (see also 2. 3).

Remark., The existence of a free action on X yields no more
information without a further construction, because Johnson and Wall
have shown [58] that every countable group of finite cohomological dimen-
sion acts freely on some euclidean space.

If one can find an explicit fundamental domain for the action of T
on X, then one can find a presentation of I', and often also some infor-
mation about the cohomology of I'. This is valid whether I' has torsion
or not, and also applies to examples (such as Fuchsian groups) which need
not be arithmetic, See for instance [29], [47] for SLB(Z) and [6], [50]

for SLz(OK)’ where K is an imaginary quadratic field.

2.2 Adding cornersto X and X/T

" In the rest of §2, we assume that G is semisimple and connected.

Let T be a torsion-free arithmetic subgroup of G, and X the
homogeneous space K\(.‘xR as in 2.1. If X/T' is non-compact, it is
diffeomorphic to the interior of a compact manifold with boundary. This
result, due to Raghunathan [40], implies that I' is finitely presented and
of type (FL) as stated in 1. 3. Raghunathan's proof is by construction of
a suitable Morse function on X/T'; it gives no information about the boun-
dary added to X/T. A different method was given by Borel and Serre [14].
They show that X is the interior of a manifold with corners X which

depends upon the Q-structure of G. (A manifold with corners is a Haus-

dorff space locally modelled upon a product of lines and half-lines
R" x RT,) The action of an arithmetic subgroup I of GQ on X extends
to a proper actionof I on X. If T is torsion-free, the quotient X/T
is a compact manifold with corners whose interior is X/T.

We recall that a subgroup (defined over Q) isomorphic to
Gm x ... X Gm is called a split torus of G. All maximal split tori are
conjugate, according to a theorem of Borel and Tits [16]. The dimension
I =1(G) of any one of them is called the Q-rank of G.

Exercise, Let G =8SO0(n, f) as in 1.2(6), with n = 3, Show that
the Q-rank 7 of G is equal to the dimension of a maximal totally iso-
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tropic subspace of f, i.e. that one can write f as

XX +xx +... + g(x

172 374 +x2l—1X2l
represent zero.

21410ttt xn) where g does not

The manifold with corners X is a disjoint union of subspaces ep
diffeomorphic to Rq, where d-7 =q =d=dim X. These ep are
indexed by the parabolic subgroups P of G which are defined over Q.

(A subgroup P is parabolic if G/P is a projective variety; equivalently,
if GC/PC is compact.) These subgroups also index the simplices op
of the Tits building ([51], [52]) of G. The dimensions of the subspaces
€ps and the incidence relations among their closures, reflect the structure
of the building as follows:

d1meP+dimch:d—1

+pe=> e Ce = 0. Co,= PCQ,

ep " eQ PCeQ” %QC %

The minimal parabolic subgroups correspond to the subspaces ep of
dimension d - 7, and to the maximal simplices of the building. The
group G itself corresponds to X, and to the empty simplex. If I =0,
then X =X and X/I' is compact (cf. 1.4).

Examples. (1) G= SL2; L(G) = 1. The parabolic subgroups are
G itself, and all conjugates of the group of upper triangular matrices.
The building is discrete and denumerably infinite: X is the union of X
with a countable number of contractible boundary components (see 2. 3).

2y G= SLz; 1(G) = 2. The building is a graph, whose vertices
are the points and lines of the projective plane over Q. An edge of the
graph connects a point and a line when the point lies on the line.

The construction of X from X is roughly as follows. For each
parabolic subgroup P of G, one defines a 'geodesic action' of the multi-
L(P) on X [14], where I(P)= dim op + 1. This

action is free, and makes X into a principal (R*)l( ) -bundle. The
L(P) L(P)

plicative group (R*)
group (R*) also acts on the product of closed half-lines (R )
Let X(P) be the bundle with typical fibre (R )Z( ) associated with the
principal bundle X; it is a manifold with corners. If P C Q, then

X(Q) C X(P). Wehave X(P)= U eQ. The union of the X(P), as P
QP
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runs through all parabolic subgroups, is X.

When P is a Borel subgroup, the geodesic action of (Ri)l(P) ca

n

be described in terms of the corresponding decomposition K,A.N. of GR:
one has X = A. N, and the action is given by multiplication by elements of
A,

2.3, Properties of X and X,/T

As above, we assume G is a semisimple connected linear Q-
algebraic group. Then X has the following properties [14]:

(1) X is a Hausdorff manifold with corners, and is countably
compact,

(2) The action of GQ on X extends to an action on X.

(The action of GR does not in general extend to X: this reflects the
fact that the construction of X depends essentially upon the Q-structure
of G, and not only upon its R-structure. )

(3) If I is arithmetic in GQ’ then T' acts properly on X. The
quotient X/TI" is compact, and is a manifold with corners if TI' is torsion-
free.

These results subsume various theorems of 'reduction theory’', due
to Siegel, Borel-Harish-Chandra, Borel etc.; see [9].

(4) The boundary &X of X has the homotopy type of the Tits
building T of Q-parabolic subgroups of G. This follows from the fact
that the 73; (P # G) make up a covering of @X by contractible subsets,
whose nerve is isomorphic to T.

(5) @X has the homotopy type of a bouquet of (Z-1)-spheres. (For,
by a result of Solomon and Tits [46], this is true of the building T. See
also [14].) In particular, dX is connected if the Q-rank I of G is = 2.

Taking reduced homology with Z coefficients, we have by (5)
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- N 0 for i#1 -1
Hi(BX)z Hi(T)z
I for i=1-1

where I is the Steinberg module of GQ ([14], [46]), which is free as an

abelian group. The usual reduced homology groups of X are zero,
because X is contractible. We denote cohomology with compact supports
(and integral coefficients) by HZ By Poincaré duality for manifolds
with boundary, we have the isomorphism (determined by choice of an
orientation for X)

0 for q#d-1

(6) H‘cl(X) ~ Hd_q()_(, X) ~ {

I for q=d-1.

From these results we can deduce properties (5)-(7) of 1. 3. Let
I" be a torsion-free arithmetic subgroup of GQ. Then X,/T is a space
of type K(T, 1). It is also a compact manifold with corners, and there-
fore has the homotopy type of a finite complex (as one sees by smoothing
the corners and triangulating, or more easily by Morse theory). There-
fore I is finitely presented and is a group of type (FL).

Further, the spectral sequence of the covering X = X/T, with
compact supports and integral coefficients, collapses and yields the
isomorphism

0 for q#d-1
BY(T; Z[T) ~ HI®) = {
I for q=d-1.
Therefore T is a duality group in the sense of Bieri-Eckmann [7] of
dimension d -1 = dim(K\GR) - Q-rank(G), and its dualizing module is
the Steinberg module I of GQ.

Unfortunately, it is not easy to use the above theory for specific
calculations of cohomology. Even the cohomology of SLn(Z) is not
entirely known at present, except for the cases n=2 and n =3 with
constant coefficients ([29], [47])).

Example. The case of SLZ. We illustrate the construction of X
by considering the case G = SL2. Then X is diffeomorphic to the hyper-
bolic plane, which can be represented as the open unit disc in C, or as

2z T b ad-be=1. Any

the upper half-plane with GR acting by z
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proper parabolic subgroup P over the field Q is the stabilizer of a
rational cusp éP on the boundary of the unit disc. In the action of Ri
on X associated with P, the element X € Rf‘i_ corresponds to a transla-

tion of magnitude log A along geodesics in the direction of the cusp:

‘p

We have X(P)=XU ep where e

points of e

p is 'a copy of R at gP; the

P correspond to the geodesics of X abutting at éP. To
visualize this, we take an isometry of the unit disc onto the upper half-
plane which throws the cusp £P to infinity. Then R:‘L acts by

(%, y)F (x, Ay), sothat ey is a copy of the x-axis added at infinity in the

y-direction, and X(P) = {l(ax, y)|-0< x< o 0< y=w]. Onegets a
manifold diffeomorphic to X(P) by removing an open collar of its boundary
eP; this gives a representation of X(P) as a strip {z €C f 0 < Im(z)=al.
Similarly, one can represent the union of all the X(P) as a manifold with
boundary contained in the upper half-plane, by removing collar neighbour-

hoods of all the boundary components. The result looks as follows:

Do B B

If one widens the excised collars until the boundary components

2
9.’;.20}»_ s

touch, one obtains the closed set of the upper half-plane which is exterior
to all the horocycles equivalent under SLZ(Z) to the horocycle y = 1:
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Although this space is no longer diffeomorphic to }_(, the group
SLZ(Z) still acts properly on it. The centre {1} acts trivially, and

the action preserves the tree shown, whose edges are boundary components

of standard fundamental domains. The fundamental domain for the action
on the tree is an edge, whose stabilizer in SLQ(Z)/{tl } is trivial. The
stabilizers of the end-points have orders 2 and 3. From the theory of
actions on trees ([45], Ch. 1, §4), we deduce the well-known free product
decomposition SLZ(Z)/{il } = (Z2/22) * (Z/3Z).

Remark., The above diagram appears in a different context in
Rademacher's work on partitions ([37], p. 267).

§3. EULER-POINCARE CHARACTERISTICS ([18], [23], [44])
3.1 The Euler-Poincaré measure

Let G be a semisimple algebraic group over R and X = K\GR
its symmetric space as in §2. Denote the Gauss-Bonnet measure on X

by Wy There is a unique invariant measure W on GR whose image
: » . 3 14
under GR =X is Wyes this is the Euler-Poincare measure of GR

Theorem. Let I' be a discrete subgroup of Gp. Assume either

(a) GR/I‘ is compact;
or (b) T isarithmetic in GR (in the sense of 1. 5).
Then the Euler-Poincaré characteristic x(I) of T is given by

X(F) = IGR/P wG .

Here x(I') is taken in the sense of Wall (cf. [18], [44]), i.e. is
equal to T,ITTX(I") where TI'' is a torsion-free subgroup of finite
index in I'. That this is well-defined follows from 1, 3. Thus, for the
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proof, one may assume I' to be torsion-free. In case (a), the Gauss-

Bonnet theorem gives directly that x(X/T) = IX/FwX = IGR/PwG’ and

hence the result since x(I') = x(X/T). Case (b) is a deep result of

Harder [23]. The idea of his proof is to take an exhaustion {Cn} of
X/T' by compact sets which are manifolds with boundary. From the
Gauss-Bonnet formula for Cn one obtains x(Cn) = fcan + facnu,

where p is some form on acn. For n—, we have lim anwX: IX/I“*’X

and x(Cn) = x(X/I'). Hence one has to prove that lim fac p=10, We
n

oC
n

sketch a proof for the case G = SL2 (the same argument works for any
group of rank 1), The boundary components of X/I' correspond to cusps
which can be taken to be at «, Truncate a cusp neighbourhood as shown
and draw a cone from 0 to intersect the line y=1 in dn. Since p
depends only on the Riemannian structure, which is invariant under

dilations, we have fac w= fd p. As n=> acn travels up the cusp
n n
neighbourhood and dn shrinks to 0. Hence lim fd pw=0,
n

In general, it can be shown that W is non-zero if and only if the
Lie groups G, and K have the same rank. In that case, the sign of the

R
measure is (—l)d/2 where d=dim X.

Example. The group SLn has rank n - 1 and its maximal compact

G#O for n= 2, and wG:O

for n= 3, Let I be a torsion-free subgroup of finite index in SLB(Z).

subgroup SOlr1 has rank [n/2]. Thus w
Then by the above x(T')=0. For SLB, the dimension of the symmetric

space is 5 and the Q-rank is 2, so by 2.3 we have cd(I') = 3. Thus
X([) =1 - b (T) + b,(T) - b (T) = 0, where b, is the i"" Betti number.
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A vanishing theorem of Kajdan (see §4) shows that bl(I‘) = 0. The
equation then implies b3 () > 0.

3.2. Computation of x(I') for Chevalley groups [23]

By Harder's theorem 3.1(b), computing x(I') is equivalent to
computing the volume of GR /T with respect to Wi This has been

done for Chevalley groups. More precisely:

Theorem (Harder). Let G be a simply-connected simple

Chevalley group over Z. Let T = G(Z).
Then x(I')=cIl &1 - mi) where ! is the rank of G,
i=1
m, ..., m, are the degrees of the fundamental invariants of WG,

c= lel/zl IWKI, W, Wy being the Weyl groups of G, K respectively

and ¢(s) the Riemann zeta function.

(Recall that, if m is an integer = 2, (1 - m) is a rational
number, viz. —bm/m where bm is the mth Bernoulli number; it is
non-zero if and only if m is even.)

Harder's proof uses Langlands' theorem that the Tamagawa number
of G is equal to 1; see [23]for the details.

Examples. 1. When G =SL , we have IWGI =2, [wl=1,
c=1, m = 2. Hence x(SLZ(Z)) =¢(-1) = —b2/2 =-1/12 (aswasa
priori obvious from the decomposition of SLZ(Z)/{il} as a free product).

2. When G = Sp2n, we have I =n, ¢ =1, and m, = 2i for
1 =1i=n Hence

n n
x(Sp, (2)) = E ¢ -2i)= 1 (-bzi/Zi)-
i=1 i=1
Remark. More generally, if E is a totally real number field of

degree r, with ring of integers OE’ then

L
X(GOR) =" I
1=

where CE is the zeta-function of the field E. (Note that, if E is not
totally real, then x(T)=0.)
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Exercise. Prove the following equivalences:

x(G(Z)) # 0= -1 e W < all the mi's are even,

G
3. 3. Finite p-subgroups of Chevalley groups

Let G be a simple simply connected Chevalley group (cf. 3. 2).

We want to compute, as far as possible, the maximal order of a finite
p-group contained in G(Q), or G(Z).

(@)  An upper bound for the order of a p-subgroup of G(Q).

We follow a method of Minkowski [34]:

Let F be a p-subgroup of G(Q). Choose N =1 suchthat F is
contained in G(Z[%I]). If q is a prime not dividing N, F can be reduced
mod q, and the reduction homomorphism F — G(Fq) is easily shown to
be faithful if q # p. Hence, |F| divides the order of G(F ), which is:

l

IG(Fq)l =q"1 (q
i=1

where 1, m, are as in Harder's theorem (3.2), and n= 3(dim G - 1).
If p+#2, we choose q such that its class (mod p2) generates the

1_1),

multiplicative group (2 /pZZ)*; we then have

m J—
vp(q -1) =

1+ vp(m) if p-1 divides m
0 if not,

where vp is the p-adic valuation.
If p=2, we choose g such that g = 3 (mod 8); we have
2+ v (m) if m is even
v, (qm -1) = { 2
1 if m is odd.
If we denote by m(G, p) the p-adic valuation of ]G(Fq)], we see
that

'¥| <p™(G P)

and
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m(G, p) = 2 (1 + v (m,)) p =3
miEO (mod(p-1)) p

m@G, 2)=1+ F (1+v (m)) ®=2).
m. even
1
By Sylow's theorem, the order of any finite subgroup of G(Q) divides
_ 1 ,m(G, p)
MG =IIp .
P
Examples.
G, - (m)=2, 6-My=2°3"7
F,- (m)=2,6,8 12- M= 215,35 5%.7%.13
E,-(m)=256 809 12-M;=2"3"5.7.13
E_-(m)=2,6,810,12,14, 18- M=2""3"15%7211.13.19

E, - (m)=2,8,12,14,18,20,24,30- M, =2"3".527"11%15%19.31.

(b) A lower bound for the order of a p-subgroup of G(Z)

Let T' be a group of type VFL., If x(T')#0 and pN appears in
the denominator of x(I'), then by a theorem of K. Brown ([18], see also
K. Brown's lectures), I' contains a subgroup of order pN.

For I' = G(Z), x(T') is computable by Harder's theorem. It is

non-zero for Gz’ F4, E7, Ea but is zero for Ee' Thus, one obtains

GZ(Z) 27, 3%, 7
F, () 2'?, 3% 5% 7%, 13
E (2) has subgroups of orders 221 37 52 7% 1113, 19
7 ’ ¥ ’ b b ’
E,(2) 2% 310 5% 79112 13219 31

(¢) Comparison of (a) and (b)
We limit ourselves to the case of E8 (for E7, see K. Brown's

lectures). By comparing (a) and (b), we see that the maximal order of

a p-subgroup of EB(Q) is:

when p #2, 3, 5, 7, 11, 13, 19, 31;
when p=19 or 31;

when p=11 or 13;

when p=17;

T T T T

or p5 when p = 5;
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plo, pll, 1012 or p13 when p = 3;

p30 when p = 2.

Exercises. 1. Let F and F' be two p-subgroups of G(Q) of

m(G,p). Show that F and F' are isomorphic (use reduction

order p
(mod q) as in (a) above, and apply Sylow's theorem to G(Fq)). Show that
one can choose an isomorphism ¢ : F = F' such that x and ¢(x) are
conjugate in G(Q) for every x € F,

This shows, for instance, that the subgroups of ES(Q) of order 2°°

are isomorphic to each other.

2. Let C be a subgroup of EB(Q) of order 31. Prove:
(i) There is a unique Cartan subgroup T of E8 containing C; it is
the centralizer of C.
(ii) The torus T splits over the field K of 315t roots of unity, The

corresponding homomorphism Gal(K/Q) —>WE is faithful; its image is
]

generated by a Coxeter element of WE .
8
(iii) The group C is contained in a Frobenius subgroup of order 30. 31

of E 8(K).

(Problem: Is it true that C acts on each fundamental module of Es
by a multiple of the regular representation? Note that the dimension of
such a module is divisible by 31, cf. Bourbaki, LIE VIII, §9, exerc. 4.)

3. Same questions as in exercise 2, with (Es’ 31) replaced by
(E7, 19) and (F4, 13).

§4. VANISHING THEOREMS AND LINEAR REPRESENTATIONS ([12],
[17], [28], [32], [41])

4.1. Kajdan's Theorem ([28])

Let G be a locally compact separable group, and let G be the

set of equivalence classes of irreducible unitary representations of G

(of any dimension: finite or infinite). There is a natural topology on G,
cf. [17], [28]. For instance, if G=R, G is homeomorphic to R; if

G is compact, G is discrete.
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Theorem (Kajdan). Assume G has the following property:

(T) - The unit representation 1 is isolated in G.

If T isa discrete subgroup of G such that G/I' has finite volume, then
I' is finitely generated, and bl (T') =0 (hence T'/(T, T) is finite).

This is proved by showing that I' inherits property (T), and that,

for a discrete group, (T) implies finite generation and b, =0, cf. [28].

Corollary. If G is a real simple Lie group of rank = 2, and if

T" is an arithmetic subgroup of G, then bl(l“) = 0.

Indeed, one can show that such a group G has property (T), cf.
[28].

Remark. XKXajdan's theorem can also be applied to discrete sub-
groups of p-adic Lie groups, or more generally products of such groups

by real Lie groups (compare §5).

4,2, Connections between cohomology and linear representations ([12],

[17])

Let G be a semi-simple real Lie group, K a maximal compact
subgroup of G, and X = K\G the corresponding symmetric space (cf.
§2). Denote the Lie algebras of G and K by g and f respectively.

Let T be a discrete torsion-free subgroup of G. Assume that
G/T" is compact; the same is then true for X/I'. We have

H*(T'; C) ~ H*(X/T; C),

which, by de Rham's theory, is isomorphic to the cohomology of the com-
plex of differential forms on X/I'. This complex is, in turn, isomorphic

to the cochain complex C*(g, f ; COO(G/I")) giving the relative Lie algebra

cohomology of (g, ) with values in the space COO(G/F) of smooth
functions on G/I'. We thus have

H*(T; C) ~ H*(g, t ; C (G/T)).
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By a theorem of van Est (cf. [12]), this is isomorphic to
H:(G; COO(G/F)), where H(";(G; E) denotes the Eilenberg-MacLane

cohomology of G with values in the G-module E, using smooth cochains

(or continuous ones, this amounts to the same).
Since G/T" is compact, LZ(G/F) is a hilbertian direct sum of

closed G-irreducible subspaces, with finite multiplicities:

L2G/T) ~ & ml, M, .
MeG
Now, Coo(G/l“) is contained in L2(G/1"), and contains the algebraic
direct sum & m(II, F)M;;, where M;; is the space of smooth vectors

of MH' This suggests that

00 0,
Hz(G, Cc (G/I)) E;GIB m(1, F)Hé(G, Mn),
and this is what one can indeed prove ([12], [17]); moreover, only a finite
number of terms in the above direct sum are non-zero.

Putting all this together, we get

H*(T; C) ~ ® m(Il, T)HXG; M.
I c I

Notice that the groups H%(G; M;Io) depend only on G and II, not
on I, Many results on these groups have been proved recently by Borel,
Casselman, Wallach, Zuckerman, ... (cf. [17]). For instance:

(1) HX(G; Mp) =0 if the infinitesimal character of My is non

trivial.
Y. D — . -
2) Hc(G’ MII)_ 0 for q< ra.nkR G if Ker(Il) is compact.
Assume G is simple and non compact. Then only the trivial
representation 1 has non compact kernel; since it occurs with multi-

plicity 1, we obtain

HY(T; ©)

R

ﬁ m(Il, r)H‘g(G; M;)

HE(G; C) ~ Hq(g, f;,C) for q< rankR G.

R

Now H*(g, T ; C) is well-known to be isomorphic to the cohomology
of the compact dual X* of X. (If G= SL2 (R), then X is the Poincaré
half-plane, and X* the complex projective line.) Thus:
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Theorem. If G is simple and non compact, and if I' is a dis-

crete subgroup of G with compact quotient, then

Hq(F; C) = Hq(X*; C) for q < rankp G.

This is called a vanishing theorem, since it implies, for instance,
that bq(l") =0 for any odd q < rankR G. One may reformulate it as
follows (see [32], [38]):

Let H? denote the space of harmonic q-forms on X which are
G-invariant. It is easy to see that g~ Hq(X*; C) for all q. On the
other hand, every element of HY defines a harmonic g-form on X/T,
hence an element of Hq(X/P; C) = Hq(F; C). We thus obtain a map
g - Hq(l"; C), which is easily seen to be injective. Thus the above

theorem is equivalent to saying that this map is surjective in the range
q< rankR G.

Remark. When G/I' is non compact, and I'" is arithmetic, the
above isomorphism HY(T; C) ~ H4(X*; C) holds for g < ¢(G) where
c(G) depends only on G, and is approximately %rankR G ([11], [17D.
Since c¢(G) = « with rankp G, one can then compute the stable cohom-
ology of the arithmetic subgroups of SL, SO, Sp, and this in turn has

applications to the K-theory of rings of integers of number fields (Borel

[11]).

§5. S-ARITHMETIC GROUPS ([10], [15], [44])
5.1. Definition and main properties (number field case)

Let E be a number field, and S a finite set of non-zero prime

ideals of the ring O_, of integers of E. Anelement x of E is called

E
an S-integer if vp(x) =0 forall p £8S, where vy denotes the discrete

valuation of E defined by the prime p . Let OE S be the ring of S-
b

integers of E, and let G be an algebraic subgroup of GLn defined over

E; put G(O ﬂGLn(

E,s =g Og, g
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Definition. A subgroup of GE is S-arithmetic if it is commen-
surable with G(OE, S).

As in §1, this definition is independent of the chosen embedding

of G in a linear group.

Examples. 1. When S = ¢, we have OE s= OE and 'S-arith-
b
metic' means 'arithmetic’.
2. Take E=Q, S={p, ..., pk}. Then Op o= Z[1/m],
b
where m = P, ... pk. Notice that an S-arithmetic subgroup of the

additive group Ga is commensurable with Z[1/m], hence is not finitely

generated if k = 1; this explains why, in the theorem below, we assume

that the algebraic group G is semi-simple.

3. In case S is the set of all primes of OE dividing Py oees Py
one may use restriction of scalars (as in 1.1, Remark (ii)) to replace E
by Q, and S by {p,, ..., p_}. However, notall sets S are of this

simple form; this is why we cannot keep to the case E =Q, as we did in

the arithmetic case.

Theorem (Borel-Serre [15]). Let G be a semi-simple algebraic

group over E, and let T' be an S-arithmetic subgroup of GE. Then T

has properties (1) to (7) of 1, 3.

Corollary. If I' is torsion-free, it is a finitely presented duality

group of type (FL).

The proofs of these results use in an essential way the Bruhat-Tits
buildings of G at the primes p of S (see 5.2 and 5. 3 below).

Remark. The above theorem holds, more generally, when G is
a reductive group, i.e. is isogenous to the product of a semi-simple group

and a group of multiplicative type.

5.2. The Bruhat-Tits building ([19], [20])

This is a local construction: we start from a local field Ep with

finite residue field (hence locally compact), and a simply connected
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(semi)simple algebraic group G over Ep. Bruhat-Tits associate with
these data a building Xp which has many properties in common with the

symmetric space K\GR of the real case (§2):

(a) Xp is a contractible (poly)simplicial complex whose dimension

is the Ep—rank of G. In particular, Hq(Xp; Z)=10 for q #0.

(b)  The locally compact group GE acts properly on Xp’ with
p
fundamental domain a (poly)simplex. The stabilizers of the vertices of

X . are the maximal compact subgroups of GE

p
p
(c) The cohomology with compact supports of X is given by:
0 if q #ra G
Hg(xp; z) = { nkEp
1 P if q= ra.nkEp G,

acts by the 'Steinberg
p

where 1 p is a Z-free module on which GE

representation' (see [12], [15]).

Example: SL, . When G=8L , X, is of dimension 1; by (a),
it is a contractible 1-complex, i.e. a tree. Let us sketch its construction,
assuming for simplicity that E P is the p-adic field Qp (for more details,
see [45]):
Let V denote the vector space Q;, on which SL2 (Qp) acts ina
natural way. The vertices of X p are equivalence classes of lattices
(i. e. Zp-submodules of V of rank 2), two lattices L and L' being
equivalent if there exists A € QS such that AL = L'. Two vertices are
joined by an edge if they have representatives L, L' with L D L' and
(L : L") =p. Every vertex belongs to p +1 edges. For p =2, the
tree Xy looks like the diagram on page 128.
One may take for fundamental domain an edge %—g . The
stabiliser of the first vertex L is SLz(Zp)’ embedded in the usual way

in SLZ(Qp); the stabiliser of L' is:

( { a p_lb
SL (Z )'=
* P (pc d )

The stabiliser of the edge LL' is SL,(Z ) nSL, (2 ) = i"o(p)

a, b, c, deZp, ad-bc=1}
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={(i Z)Ia, b, ¢, d eZp, ad-bc=1 and ¢ =0 (mod p)}
which has index p +1 in both SLz(Zp) and SLz(Zp)" It follows that

SLZ(Qp) o SLZ(Zp) * fg(p) SLz(Zp)" cf, [27], [45].

Applications. (i) Let T be a discrete torsion-free subgroup of
SLz(Qp)' Then T' acts freely on X P
is both discrete and compact, hence finite. It then follows that I is

since the stabiliser of any vertex

isomorphic to the fundamental group of the graph Xp/l“; hence T isa
free group (Ihara's theorem, cf. [27], [45]).

(ii) The group SLZ(Z[I/p]) is dense in SLZ(Qp), so that the edge

LL' is a fundamental domain for its action on Xp. The stabiliser of L

is SL2(Z), and the stabiliser of L' isacohjugate SLZ(Z)' of SLQ(Z).
Thus '

SL,(Z[1/p]) = SL(2) * SL,(2)'

r' ®

where Fo(p)= {(i g) eSLZ(Z)]cE 0 (modp)}.

This implies, for instance, that
ved SLQ(Z[l/p]) =2 and X(SLZ(Z[I/p])) =(p-1)/12.

Exercise. Let I' be a torsion-free subgroup of finite index of
SLZ(Z[l /p).
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(a) Show that T = F1 *F
groups, and F has finite index in both (use the fact that I' is dense in
SL, (@)

(b) By th. 3 of [43], p. 500, every non trivial normal subgroup
of I' is of finite index. Deduce that T'" is not SQ-universal. (Recall

that a group H is SQ-universal if every countable group is isomorphic

F2, where the Fi's are free non abelian

to a subgroup of a quotient of H.)

Thus an amalgam of free non abelian groups need not be SQ-universal

Problem, Is it true that SL2(Z[1 /p]) is coherent, i.e. that each of
its finitely generated subgroups is finitely presented? One may ask the

same question for SLB(Z).

5.3, Applications of the Bruhat-Tits buildings to cohomology ([15], [44])

As in 5.2, let T be an S-arithmetic subgroup of GE, where G

is semi-simple. It is easy to see that I' is a discrete subgroup of the

locally compact group

G, = o G, X I GE s
v arch. v peS P

where EV is the completion of E at the archimedean place v (hence
Ev is isomorphic to R or to C). If we denote by H the group RE/QG
deduced from G by restriction of scalars from E to Q (cf. 1.1), we

may rewrite GS as:

GS:HRX I GE

peS Tp
The group GS’ hence also I', acts in a natural way on the space
Xg=Xgx I Xp ,

pes

where X, (pe€S8) isa Bruhat-Tits building as above, and Xy is the

manifold with corners associated with H (cf. §2).
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Theorem ([15]). The group I' acts properly on XS’ and the

quotient Xs/l" is compact,

Thus, if T is torsion-free, it acts freely on X, and we have
~ — 3 * ~ H*
m (XS/F) ~ T, ﬂi(Xs/l“) =0 for i#1, H (XS/F) H*(T).

Using the compactness of XS/F, this shows that I'" is finitely presented
of type (FL). The fact that T' is a duality group comes from the vanish-
ing of the cohomology with compact supports of X, in all dimensions

S
except one, where it is Z-free; this dimension is:

cd(T) = dim XS - rank, H = dim XS - rankE G

Q
=dim X, - rank G+ J ra G.
R - rarkgG+ L ranky
Euler-Poincare characteristics. On each GE , there is a unique
p

invariant measure p p such that

dim o
N

where the summation is over a set of representatives of the cells o of

X modulo G, , and G is the stabiliser of 0. This measure is
p E p p,o

called the Euler-Poincaré measure of G

E_ itis > 0 (resp. < 0) if
p
rank.EpG is even (resp. odd), cf. [44]. If we put on GS =Hp X Il GE

the product of the Euler-Poincaré measure of Hp (cf. §3)and of the P

Fy (pe€8), we get an invariant measure Hge

Theorem ([44]). x(T)= uS(GS/F).

This is proved by induction on ]Sf, starting from the case ]S] =0,
which is Harder's theorem 3, 1.

. _ dim o
Exercises. 1. Show that By= 2 (-1) up,c, where ”p,o
is the unique Haar measure on GE for which Gp . has volume 1,
ki

Y
2, Show that the cohomological dimension of a torsion-free sub-

group of SLn(Z[l/p1 pk}), where the pi's are primes, is
=(n-1(k+ 121). Use this to prove that a finitely generated torsion-free
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subgroup of GLn(Q) has finite cohomological dimension ([44]).

5. 4. The function field case ([3], [5], [15], [44], [45], [48]

Let k be a finite field, C a complete non-singular curve over k
with function field E, and S a finite non-empty set of closed points of
C. Let OE, S be the subring of E consisting of functions having no
poles outside S. Let G be an algebraic group over E. As in 5.1, one

says that a subgroup of GE is S-arithmetic if it is commensurable with
G(OE, S)‘

Example. If C is the projective line P, and S= {«], then
E =k(t), OE, = k[t]; if we take G = SLn’ we thus see that an S-
arithmetic subgroup of SLn(E) is a subgroup which is commensurable
with SLn(k[t]).

For n= 2, it is known (see below) that SLn(k[t}) is not finitely
generated. This shows that, even when G is semi-simple, S-arithmetic
subgroups of GE can be rather pathological. There is one case, however,

where they behave quite well:

Theorem ([15], [44]). Assume that G is semi-simple, and

rank.EG = 0. Then every S-arithmetic subgroup I' of GE has properties
(1) to (7) of 1. 3.

To prove this, one first observes that I' acts properly on the pro-
duct XS of the buildings Xp (pes), and that the quotient XS/F is
compact (this is where the hypothesis on rankEG is used). Properties
(1), (2), (3), (4) follow easily from this, and (5), (6), (7) are proved as in

the number field case.

When rankEG = 1, one has only scattered results. For instance:

(1) SL (k[t]) is finitely generated, but not finitely presented ([5)).

(i) SL (O S) is finitely generated if and only if |S| = 2, and it
is finitely presented if and only if |S| =3 ([36], [43], [45], [48).

For the cohomology of such groups, see Harder [25].
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5 - Topological methods in group theory

PETER SCOTT and TERRY WALL
University of Liverpool
Introduction

This article is a revised version of notes on an advanced course
given in Liverpool from January to March 1977 in preparation for the
symposium. The lectures given by Terry Wall at the symposium were
mainly taken from Sections 3 and 4, and much of the material in John
Stallings' lectures is in Sections 5 and 6. It seemed worth publishing
the whole, as a rather full introduction to the area for those with a back-
ground in topology. Originality is not claimed for the results in the
earlier sections (though full references have not always been given), but
the uniqueness results in Section 7 and most of Section 8 are due to
Peter Scott.

1. BASIC NOTIONS

The link between topology and group theory comes from the funda-
mental group. I shall make no attempt to present this; almost every
introductory topology text does so. Particularly suitable for this course
is Massey's book [18]. An equivalent account, from a different viewpoint,
is given by Brown [2]. Let us recall the basic properties of the funda-

mental group.

(1) For every topological space X and point x € X we have a
group 7, (X; x). This depends only on the path component of X containing
X. A path from x to y induces an isomorphism ™ X; x) =+ ™ X;y); a
closed path induces an inner automorphism. A map f: X—=+Y with
f(x) =y induces a homomorphism f, : m X; x) -~ ™ (Y; y), and this

assignment is functorial: in fact we have a homotopy functor.

(2) A map 7:Z =X isa covering if it is locally trivial, with

discrete fibres - i.e. every x € X has a neighbourhood U, and a homeo-
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morphism ﬂ_l(U) ll'U X D with D discrete, such that pr, °h =7 For
a covering 7, and z € Z, the map 7, : ™ (Z; z)—+ ﬂl(X; f(z)) is injective.
If X is reasonably nice (the minimal technical conditions are path-
connected, locally path-connected, and weakly locally 1-connected), the
correspondence between triples (7 : Z = X a connected covering,

Z € w_l(x)) and subgroups Ty, (Z; z) of ™ (X; x) induces an isomor-
phism of categories. Hence, in particular, the coverings are isomorphic

if and only if the corresponding subgroups are conjugate.

(3) The third basic fact we need to recall is the technique for
calculating fundamental groups, due to van Kampen. First suppose Xl,
X2 are path connected open subsets of X, with path-connected intersection
Xo‘ Then for any base point x € Xo’ we have the following commutative
diagram in which all the maps are induced by inclusions of spaces.

i
1

L8 (XO; X) > (Xl; X)
L j Iy
. 2 > .
m (Xz’ x) > 7 X; %)

Proposition 1.1. This is a pushout diagram in the category of

groups. In other words, for any group G we have a bijection, induced
by @, i), Hom(m (X; x), G) = {(f , {)) € Hom(n (X ; x), G) X
Hom(771 (Xz; x), G):f i = £ i, € Hom(m, (XO; x), G)}.

The standard argument with universals shows that the pushout is
uniquely determined; existence is provided by the proposition. The proof,
involving breaking up a path in X into subpaths each lying in Xl or Xz’
is somewhat messy. The restriction that the Xi are open can be relaxed
if each is a deformation retract of some neighbourhood, as is usually the
case in practice.

The restriction that X0 be connected is less desirable. One may
reformulate the proposition to cover this case by using groupoids [2].
More na;ively, suppose X0 has just two path-componNents Y and Z;
defiile Z by identifying Xl and X2 along Z, and X by attaching Y X I
to Z by identifying Y X i to the copy Yi+l of Y in Xi+1 (i=o0, 1).
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There is an obvious map ¢ : X=X (identify Y X I to Y) which is usually
a homotopy equivalence, and induces isomorphisms of L We can calcu-

late ™ (2) by Proposition 1. 1,

Y/

S

Now choose a base point y €Y; let ‘A be the corresponding point
in Yi’ and I a path in Z joining v, to v, We have homomorphisms
a n (Yy) = (Y ;y)*7(Z;y),
~ 1 ~
a ﬂl(Y; y) = 711(Y2; yz) -'711(2; yz) = ﬂl(Z; yl).

Proposition 1, 2, For any group G, we have a bijection

Hom(rf1 (i;yl), G) = {(fl, t) €H0m(771 (i;yl), G XG:

-1
flaz(p)_t flozl(p)t for all pen (Y; .

Here, fl is the com~posite 711(2; yl) - ﬂl(}N(; yl) -+ G, and t is the
image of the class in ™ (X; yl) of the loop Z Uy X L.

We will show that Proposition 1. 2 follows from Proposition 1. 1.

In order to start our study of fundamental groups, we need to know
that the circle Sl has infinite cyclic fundamental group. This is easy to
prove using the covering of s by the real line R. One might think of
deducing this result from Proposition 1. 2 by taking X to be s’ and X1
and X2 to be open intervals., For then Hom(nl(X), G) = G for a.ny1
group G. However our proof of Proposition 1. 2 uses the fact that S
has infinite cyclic fundamental group. Here is a quick sketch of that proof.

First, the intermediate space W = Z v (y X I) can be considered

as the union of Z and the circle I U (y X I) intersecting in the arc 1.
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Hence nl(\ir, yl) is the pushout of Z <« 1 —+ m (2, yl), i. e. (see later)
the free product Z x 7, (E, yl). Now X =W U (Y X I), and
Wn(¥XD)=(YX0)u((yXIu(Y x1). We deduce, after a little mani-

pulation, a pushout diagram

ﬂl(Y: Y) * 771(Y, y) _“”—(P-'“b Z * 771(2’ yl)

| |

m (Y, y) > 7 (X, y,)

where ¢ is given by @, on the first factor and by cHt - ozz(c) . t-1 on
the second. This is equivalent to Proposition 1, 2, We have given the
proposition independently, however, since it introduces a construction

which will be important below.

Example 1.3, X = S1 v Sl, the one-point union. Now apply Propo-
sition 1.1, taking X X2 as the two circles. Thus Hom(711 X;y),G) =
G X G. The group m (X, y) is called the free group on generators t1’
t2 the classes of the circles.

To put some bones into this abstraction, we next give a concrete
description of this free group on t, u. A letter is any one of t, u, f, w
A word is a finite (perhaps empty) sequence of letters. The word is

reduced if none of tt, T, uu, uu occurs as a pair of consecutive letters.

Theorem 1.4, There is a bijection between elements of the free

group F on t, u and the set W of reduced words. Each word defines

an element of G by forming the product of various of t, u, t_l, u_1 in

the indicated order.

Proof. (i) Observe that F contains the elements t, u and hence
the set H of products of finite ordered sequences of elements t, u, t_l,
u'l. Clearly H is closed under products and inverses, hence is a sub-
group. There is a homomorphism F -+ H such that t=+t, u > u The
composite F +H CF coincides with the identity on t, u hence is the
identity. Thus F = H.
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By definition, each element of H is represented by a word. If the
word is not reduced, we can cancel products tt™! etc. Thus each ele-
ment is represented by a reduced word and we have a surjection a:W—F,

It remains to prove « bijective,

(ii) Write S for the symmetric group on the set W of reduced
words., Define permutations 7, 9 € S as follows: If the word w ends in
T (resp. u), then w7 (resp. w9) is obtained from w by deleting the
last letter. Otherwise, w7 (resp. wd) consists of w followed by t
(resp. u). We see at once that these are permutations with inverses

7, 97! defined similarly but interchanging the roles of t and t (resp.

’
u and u).

By definition of F, there is a unique homomorphism ¢ : F =S such
that ¢(t) = 7, ¢(u) =9. We defineamap B:F =W by A(g) = ¢(g) (1).
For any reduced word w, we see by induction on the length of w that
B(a(w)) =w. Thus « is injective, hence bijective.

We used the example of Sl v S1 to demonstrate the existence of a
free group F of rank two. Note that the proof above does this quite
independently for it shows that the set W has a natural group structure
which makes it a free group of rank two.

There is an obvious analogue to the above for the free group F(X)
on any set X of generators, If X is finite, existence is seen by in-
duction. We observe that if X C X2 , the natural map F(Xl) - F(Xz) is

injective. Now for X infinite, define
FX)=U{F(Y): YCX, Y finite}.

If v; € F(Yi) CF(X) for i=1, 2, 3 we define ., to be the product in
F(Y1
immediately verified that for any G, restriction to X yields a bijection
Hom(F(X), G) = Map(X, G), so F(X) is th free group on X.

Now consider any group G, set X andmap ¢ : X+ G. By the

u Y2). Associativity follows by considering F(Y1 ] Y2 U Y}). It is

above, ¢ has a unique extension ¥ : F(X) = G to a homomorphism whose
image is then a subgroup X. Any element of X can be written as a word
in the elements ¢(x), and thus lies in any subgroup of G containing ¢(X).

Thus X is the intersection of the subgroups containing ¢(X): it is called
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the subgroup generated by ¢(X) (orby ¢). If X =G, wesay G is
generated by ¢(X).

Now consider a finite CW-complex K with one vertex x. By
induction we see that the 1-skeleton K1 has free fundamental group
generated by the classes g of the 1-cells. As K1 is a deformation
retract of a neighbourhood, we can apply van Kampen's theorem to cal-
culate the effect on the fundamental group of attaching a 2-cell e2. Now
e? is contractible, and a suitable neighbourhood of K1 meets it in a copy
of S' XR. The map o : st - N(Kl) K is homotopic to the attaching
map of the cell, and determines «, : Z = nlsl - 771K1 with «, (1) =r,

say.

Then 771(K1 U e2) is the pushout of

o
*
z > 7 K')

{1}

Arguing similarly with the other 2-cells e]., we find that if their
attaching maps yield classes rj € m (Kl), then the 2-skeleton K2 has
fundamental group m (KZ) characterized by the property that for any
group G,

Hom(ﬂl (KZ), G) = {fe Hom(ﬂl(Kl), G):
f(rj) =1 for each jJ.
Since ﬂl(Kl) is free on {gi :iel}, f is determined by the f(gi).
The sequence {gilrj} where the g; are abstract symbols and
rj € F{gi} is called a presentation of 7 if, for any G, Hom(n, G) is
given as above. The same argument as in (i) of the proof above shows

that the images of the g; are generators of 7. The rj are called

142



relators. Let N be the subgroup of F {gi} generated by the rj and

all their conjugates: N is called the normal closure of the rJ.. Clearly
it is the least normal subgroup of F{ gi} containing them all. Hence

F{g ]/N has the universal property defining {g, !rj }: this yields a
construction of this group. Again, the restriction to finite sets of genera-
tors and relators is easily seen to be irrelevant.

Of course you have all seen generators and relators before: here it
is the relation with two dimensional CW complexes that I wish to stress.
(Incidentally, adding cells of dimension > 2 does not affect T, as we
see on applying van Kampen's theorem again.) For example, let x? be

any such - say having one vertex x - and Y any space.

Lemma 1.5. For any homomorphism ¢ : 711(X2, X) =+ ™ (Y, y)

there is a map oz:XZ-'Y with a, = ¢.

Proof. The l-cells and 2-cells of X° give a presentation
m (Xz) = {gi’rj}. The image of g; by ¢ is an element of Tll(Y), repre-
sented by a map (Sl, x) = (Y, y). Use these maps to define ol x - Y.

Then we have a diagram

F{gi}%ﬂl(Xl, x) 1

&’
l /(p/y 771 (Y) Y)
= (XZ, X)

{gi!rj} =

which commutes, by construction of a'. Hence ai(r].) =1, For each

2-cell of X, with characteristic map

Xj : (D2, Sl)-’(Xz, Xl, x)

the class of )(J.ISl is rj (by definition) so the class of al e Xj st is

a,lk(rj) =1, Thus al ° Xj is nullhomotopic, so there is a continuous
extension

2 D’ =Y
with ¥, st = o

identification space, the diagram

° (xJ.ISl). Now by definition of the topology of X as an
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x' v (UD® x )
j _ -

linclu{xj} ///’/
2 ///

defines a map « : X2 =Y such that oz'X1 =ao! and @ o Xj = z,l/j.

Since m (X2, x) is a quotient of m (Xl, X) it follows that a«, = ¢.

Remarks. The condition that X has dimension 2 is essential
here, However, a particularly interesting case is when Y is such that
™ (Y, y) =7 and for any (X, x) the map a = o, gives a bijection
between homotopy classes of maps (X, x) = (Y, y) and Hom(wl (X, x), 7).

Such a (Y, y) is called a classifying space for 7 (or Eilenberg-

MacLane space K(7, 1)), The usual argument with universals shows its
uniqueness (up to homotopy); existence is also not hard to prove, for any
7. However, the existence of a Y which is e. g. a manifold, or finite
complex imposes an interesting and subtle condition on 7.

I now return to Propositions 1.1 and 1.2. We have obtained in some
cases fairly explicit descriptions of the groups so defined. I will now give
some useful generalizations of these.

The real beginning of our subject was the discovery that in the case
when the maps are injective one can obtain structure theorems similar to
1. 4. In fact a description of A *o B in terms of reduced words was
already given by Schreier in 1927 [36], but a more thorough account and
the start of the recent work of the subject is contained in Hanna Neumann's

thesis [35]. The groups A x, go back to [13], though they are not actually

C
defined in that paper. There have of course been many papers on the
subject since; our account derives from those of Serre [22] and Cohen [5]
and seems simpler and more natural than the original papers.

Propositions 1.1, resp. 1.2 concerned diagrams

011
C————» A
! o B
laz i Bz resp. CﬁA—————»G
31 v @,
B————- +»G
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Definition. If the maps @, o are injective, the universal group
G is called the free product of A and B amalgamated along C (resp.
amalgamated free product of A along C), and denoted by A *C B resp.
A *o If C is the trivial group, then A *o B is denoted by A x B and
is called the free product of A and B.

Note. There seems no reason except tradition for calling the first
an amalgamated product but the second an HNN group.

We now present the traditional combinatorial arguments for analysing
the structure of amalgamated products. Essentially equivalent results will
be obtained below independently by geometrical reasoning.

In each of the above cases, one can give an explicit description using
reduced words. The easy first half of the proof of Theorem 1, 4 shows
(with only slight changes) that any element of A *c B can be written as a

product
a1b1a2b2 v anbn with a; € ,81(A), bi € Bz(B) (maybe = 1)
and that any element of A x., can be written as

C

r r r

2

atlat?...ath
1 2 n

with a, € BA), r, € Z .

Now we restrict our attention to A *o B. Again, it is clear that some
reduction is possible - e, g. for ¢ €C, ,81(3.)/3’2(012(c)-b):B1 (a al(c))Bz(b).
We deal with this by pushing all the c's to the right, as follows. To
simplify notation, write @, e as inclusions so C CA, C C B, Pick
representatives a; € A for the right cosets aiC of C - thus giving a
section of the projection A =+ A/C, or right transversal of C in A; then

do the same for B. We impose the restriction that the identity coset C
is represented by the identity element.
A reduced word is now a sequence

b ...ab
3,9 2n°n°

such that ¢ € C, 2y belongs to the chosen transversal TA for C in A,

bi belongs to the chosen transversal TB for C in B and
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a,=1=1i=1, b,=1= i=n.
Any element of A *c B may be represented by a reduced word.

For write the element as

and use induction on n. For n =0, the empty word may be represented
by 1 €C: areduced word, Otherwise, by inductive hypothesis, we may

write

ab ...a_ .b =a'b! ... a'b'c', a reduced word with r=n-1,
171 n-1"n-1 171 rr

If now b' =1 resp. a_€C then (a'c'a ) €A resp. (b'c'a b )eB
r n r n r nn

and we have a word of length = r, which may be reduced by inductive

3 1 1 t —_— ] " i 1
hypothesis. Otherwise write c a =a..,¢ with 1 # a1 € TA and
" j— ] s
c bn = br+lc with br+1 € TB and we have a reduced word
a'bla’ .,

1
11 2°°° br+1c'

Theorem 1, 6, The maps A A *c B, B—A *c B are injective:

every element may be represented by a unique reduced word.

Proof. Again write W for the set of reduced words.
Define an action of B on W by

b_ thAt 3 p— tht! 3 3 1
(a.lbl - anbnc) =a,... anb c' if bncb—b c' in B with b' € TB.
To check that this is an action, observe that the part of the word up to
(and including) a is left fixed; for the words a, ... anbnc which start
so, it is equivalent to the right action of B on itself.

Define an action of A on W by

a a ... b a'c' if b #1, ca=a'c' with a’ eTA
(@b ... ab )= n n
a ... b _a"c"ifb =1, a_ca=a"c" with
1 n-1 n n
a €TA

To check that this is an action, observe that the part of the word up to bn
(if bn #1) or bn_1 (if bn =1) is fixed; the rest is the standard right
action, This defines maps A = S(W), B = S(W) which clearly agree on
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C, hence define A *c B ﬂ S(W), It is now immediate by induction again

that ( )¢(w) = w for any reduced word w, so these elements of the group

are distinct.
For A *o

@,(C) in A. Now ta,(c)=a ()t so t_lal(c'1)= az(c_l)t_l and we

we proceed similarly, Pick right transversals Ti of

define a reduced word to be one of the form

€ € e
a.tla.t2 atna
1 2 *" " n n+1

where e, = *1, a € T1 if g = +1, a € T2 if & =-1 and moreover
a, # 1 if g 1 * & We let a
allow us to bring any word to a reduced form.

be arbitrary. The above relations

Theorem 1.7, The map B :A = A x. is injective. Every element

C

is represented by a unique reduced word.

Proof, Again we define an action. The element a € A acts by
sending the final a1 to LY t corresponds to the permutation 7
defined by setting

€ €

1 n .
(alt ant an+1)7_

€
n-1 -1 . _
t (a o« (an+1)) if e = 1 and a,

at ...a
1 n-1 n 21

+1€4(©)

n_, , .

. ant an+1tcxz(c) otherwise, where
— 1 ] 1 1

a 41 =34 al(c ) with CANR) eT1 .

We see that this is a permutation by verifying that an inverse is given by

€ e N
(alt e ant an+1)7 =

€ €
at!? a_ -t n'1(3. o a_l(a )) if & =+1 and a € a (C)
1 *tt n-1 n 1 2 “ntl n n+l 2 7

& n -1
alt ant an+1t o (c") otherwise, where

—_ " ” i "

a = an+1oz2(c ) with alig eT2 .

The proof now concludes as before.
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2. GRUSKO'S THEOREM

Grusko's Theorem, Let F be a finitely generated free group,

G= G1 * G2 and let ¢ : F =+ G be an epimorphism. Then there are
subgroups Fl and F2 of F such that F = F1 * F2 and ¢(Fi) = Gi'
This is a subtle result about generators of G. It says that if G

can be generated by n elements, then there exists a set of n generators
for G with each element in Gl or Gz' This gives us the inequality

#G) = p(G)) + p(G)

where p(G) denotes the minimal number of generators of a group. But the

reverse inequality is obvious, so we deduce
Corollary 2.1. If G= G1 * Gz’ then u(G) = u(Gl) + u(GZ).

As only the trivial group can have p equal to zero, we see that

u(Gi)< u(G) when G1 and G2 are nontrivial.

Corollary 2, 2. If G is a finitely generated group, then

G = G1 K yua K Gn for some n, where each Gi is indecomposable. (1. e.

Gi =A *B implies A or B is trivial.)

We now give Stallings' proof [25] of Grusko's Theorem. See [12]
for a proof using groupoids and see [3] for a proof using Bass-Serre
theory (Chapter 4 of these notes).

Pick two CW-complexes with fundamental groups G1 and G2 and
construct a CW-complex X with fundamental group G1 * G2 by joining
these two complexes with an interval E. Let v denote the midpoint of
E and subdivide E so that v is a vertex of E. We will take v as the
basepoint of X, Let Xi denote the closure of the component of X - {v}
whose fundamental group is Gi’

Let K be a based space and let f : K=+ X be a based map, We will
say that f represents ¢ if there is an isomorphism of m (K) with F

such that the diagram below commutes.
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G= ﬂl(X)

We consider 2-dimensional CW-complexes K and cellular maps
f : K= X which represent ¢. Such maps certainly exist for one can
take K to be the wedge of n circles where n is the rank of F. How-
ever, this particular choice of K may not be the correct one for our
purposes, Our aim is to choose K and a map f : K=+ X representing
¢ so that f_l(v) is a tree. Once this is achieved, the result follows
easily. For let Li denote f_l(Xi) and let Fi denote 7, (Li)' As
L UL =K, andas L nL = f-1(v) which is simply connected, we
see that ™ (K) = F1 * F2. Also f*(Fi) C Gi as f(Ki) C Xi' Now the
results of Theorem 1. 6 on reduced words in a free product, show that
we must have f*(Fi) = Gi’ because ¢ is an epimorphism, This is now
the conclusion of Grusko's Theorem.

We find an appropriate choice for K by starting with a space K0
and a map f0 : K0 = X representing ¢ and then performing a sequence
of modifications to K0 and fO. We do this so as to obtain spaces

K,K, ... andmaps f, f all representing ¢, such that f;l (v)

) oe
is a forest (disjoint union of t2rees) with o, components and @i < an,
for n= 0. After at most o steps, we will obtain a space Kn and
map fn : Kn —+ X representing ¢ such that f;ll(v) is a tree, and the
result will follow.

We take K0 to be the wedge of n circles, where n is the rank of
F and choose a cellular map f0 : K0 = X representing ¢ so that f;l(v)
is a finite number of 0-cells in Ko’ In particular, f;l(v) is a forest
with @ components, If f;l(v) is connected (and hence a single point),
we already have the space K and map f which we want. Otherwise, we
use the following lemma to construct the sequence of spaces already des-

cribed and hence deduce the result.

Lemma 2.3. Let K be a based CW-complexand f: K= X a map

representing ¢ : F = G such that f_l(v) is a forest with @ components,

If o =2, then there is a based CW-complex K' anda map f':K'=X
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representing ¢ such that f'_l(v) is a forest with @ - 1 components.

Proof, Let ! be a path in K with endpoints in f'l(v). (By a
path, we mean simply that . isamap I=+K.) Then f° ! is aloop in
X based at v. Pick a path ! joining distinct components of f_l(v).
We construct a space K' from K by attaching a 1-cell e to o and
then attaching a 2-cell B to e Ul. We would like to extend f:K=X
toa map f':K'—=X suchthat f'(e) =v and f"l(v) does not meet the
interior of the 2-cell B. If this can be done, then f'_l(v) = f'l(v) Ue
which is a forest with « - 1 components, Also f' represents ¢, as f'
extends f and K' deformation retracts to K. Hence f' has all the
required properties. We will be able to construct such an extension f£'
if the loop f o I has image in Xl (or X2) and is contractible in X.
For then f o ¢ is null homotopic in Xl, and f' restrictedto B is
essentially this null homotopy. Our aim is to show that such a I exists.

Choose two distinct components A and B of f_l(v) and let L
be a path in K from A to B. As f_: wl(K) - nl(X) is onto, there is a
loop y in K based at L(0) such that f o y is homotopic to the loop
fo L, Let I be the path y_lL in K. This is a path in K joining A
to B such that f o I is a contractible loop in X.

We can suppose that ¢ is a cellular map I = K by subdividing I
and by choice of Z. Thus we can express ! as a union of subpaths
L,y +++, L such that the ends of I, lie in £ 1(v) and fo l; is aloop
in Xl or Xz' Further we can suppose that the maps f o Zi alternate
between X1 and X2. (Note that li may meet components of f_l(v) in
its interior.) We say that ¢ has length n.

Let g; denote the homotopy rclass of fo li in 771(X, v). Suppose
that some li has the two properties that g; is trivial and that the end-
points of li lie in one component of f_l(v). Then we can alter 7 to 7'
by removing li and replacing it with a path Zi in f_l(v) which joins
the endpoints of li. Clearly ' has length less than n. By repeating
this process, we can arrange that ! has no subarcs li with these two
properties.

Now the equation I = Z1 - lr gives rise to the equation

l=gg,... g iIn7(X). As 7 (X)=G *G, andthe g;'s lie alter-
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nately in G1 and G2, we deduce that some g; is trivial. The corres-
ponding li joins distinct components of f_l(v) and has fo Zi con-
tractible. We can now construct the required space K' and map

f' : K' =X as previously described,

3. SUBGROUPS AND COVERING SPACES

We will apply the theory of covering spaces to the problem of des-
cribing subgroups of amalgamated free products. First, we consider free
products.

Suppose given a group G = G1 * Gz. As before we construct a
space X with fundamental group G by taking CW-complexes Xl, X2
with ™ (Xi) = Gi and joining the basepoints of Xl and X2 with an
interval E. We take the midpoint v of E as the basepoint of X. Now
suppose that H is a subgroup of G. Then H is the fundamental group
of some connected covering space X of X, with projection map
p: }~( =+ X. Inside 5(, we have p_l(Xl) which is a covering space of Xl
and so consists of various connected covering spaces of Xl. Also
p_l(Xz) is a union of connected covering spaces of Xz' Finally, as E
is simply connected, p'l(E) is a union of copies of E. Thus 5( looks
like (and agrees up to homotopy with) a graph I with a covering space of

1
product of the fundamental groups HA of all the spaces at the vertices of

X or X2 at each vertex, If I were a tree, then H would be the free

I'. Ingeneral, I' consists of a tree T with extra edges attached to T,
where T is a maximal tree in I. Thus H will be the free product of
all the groups HA and of a free group whose generators correspond to the
edges of T - T.

Let ¥ denote the basepoint of X and recall that H = pu(n (X, 9).
Let C be a component of p_l(Xl) and join it to v by a path in X. We
see that p*(ﬂ1 (C, v)) is a conjugate of some subgroup of Gl. Thus the
above description of a typical covering space of X leads at once to the

following result.

Theorem 3,1 (Kuro$' subgroup theorem), If H is a subgroup of

G = Gl * Gz’ then H is the free product of a free group with subgroups

of conjugates of G or G,.
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Corollary 3.2, If H is a subgroup of a free group, then H is

free.

Corollary 3.3, If H is indecomposable and not infinite cyclic, and

if HC G1 * G2, then H lies in a conjugate of Gl or Gz'

Examples of an application of Corollary 3. 3 would be when H is

finite or abelian.

Exercise. Prove that a non-trivial direct product cannot be a non-

trivial free product.

Lemma 3.4 If G=G G, and if w_lle NG, is non-trivial,

then i=1, wcG, andso w G wn G, =G,.

Proof, Clearly G1 must be non-trivial, and we may as well
suppose that G2 is non-trivial. Now let g be a non-trivial element of
G, such that w lgw € G, We canwrite w=ow,, where @ ¢G, and
w. is a reduced word in G beginning in G2. Thus
wlgw = wIl(a_lga)w1 = W;Ig'w1 where g' is a non-trivial element of
Gl. Thus w{lg'w1 is a reduced word. But this is an element of Gi and
so has length 1. Hence w. is trivial and so w lies in Gl. Hence
w_lle =G, andwehave G, NG, non-trivial. This can only happen

when i=1, which completes the proof of the lemma.

Theorem 3.5. If G is a finitely generated group, then

G = G1 k. k¥ Gn’ where each Gi is indecomposable. If also

G=G *... *G_=H_ ... «H_ where each G, and H. is non-
1 n 1 m  — i =— 7 —

trivial and indecomposable, then m =n and, by re-ordering, we have

Gi %Hi for each i. Further, for each i with Gi not infinite cyclic

we have Gi conjugate to Hi'

Proof. The first sentence is just Corollary 2. 2 stated again.

Now suppose that G = Gl * ... % Gn = H1 * ... X Hm, where each
Gi’ H. is indecomposable. If each Gi is infinite cyclic, then G is free
and Corollary 3, 2 tells us that each Hj is free. As HJ. is indecomposable

it must be infinite cyclic and it now follows easily by abelianising and
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using the basis theorem for f.g. abelian groups that m = n. Other-
wise we can re-order the Gi's so that Gl, vens Gr are not infinite

cyclicand G o Gn are infinite cyclic.

y oo

CorollaII";IB. 3 applied to G1 C H1 *oa. K Hm shows that, by re-
ordering the H's, we have u_lGlu CH, for some u in G. Hence H,
is not infinite cyclic and Corollary 3. 3 applied to H1 C G1 * .. Xk Gn
shows that v_lHlv C G, for some i. Hence W_lle C G;, where
w = uv. Now Lemma 3.4 shows that w € Gl and i =1, Thus we have

G =w 'GwCv'HvCaG, .

1 1 1 1

It follows that H1 is conjugate to G1 in G and hence also that H1 is
isomorphic to Gl.

Repeat this process for G2, v, Gr to show that G.1 is conjugate
to H, for i=1, 2, ..., r. (Note that we cannot find two different G,'s
conjugate to the same Hj as different Gi's cannot be conjugate to each
other, by Lemma 3. 4. )

Consider G/(Gl x L, ok Gr>’ where (X) denotes the normal
closure of a subset X of G. As Gi is conjugate to Hi for
i=1, 2, ..., r wehave

Gr+1 *...*GnE G/<G1 *"'*Gr> EG/(HI *"'*Hr>EHr+1*"'*Hm

The left hand group is free, and so each Hi’ i=r+1, ..., m mustbe
infinite cyclic. It now follows that m = n and we have completed the
proof of Theorem 3, 5.

One might ask whether an analogue of Theorem 3. 5 holds for non-f, g.
groups. At the end of this chapter, we give an example which shows that the
first part of the theorem fails for non-f. g. groups. However, the unique-
ness result which is the second part of Theorem 3.5 clearly applies to all
groups which can be expressed as a finite free product of indecomposables.

The next step is to consider the structure of subgroups of amalgama-
ted free products. Let us consider a group G =A *c B. Let X0 be a
CW-complex with fundamental group A, let Xl be a CW-complex with
fundamental group B and let X2 be a 2-dimensional CW-complex with
fundamental group C. Lemma 1, 5 tells us that there are maps
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f0 : X2 ->X0 and fl : X2 nd X1 such that the induced maps of fundamental
groups are the inclusions of C in A and B respectively. (By sub-
dividing, we can suppose that f0 and f1 are cellular.) We construct a
space X with fundamental group G by taking Xo’ X1 and X2 X1 and
gluing X X {i} to X, using f, for i=10, 1. We identify X with the
subspace X X {$} of X ~

Let H be a subgroup of G and let X be the corresponding cover-
ing space of X with projection map p : )N( =+ X. As before p_l(Xi) con-
sists of a collgction of connected covering spaces of Xi’ for i=0,1
or 2. Thus X is constructed from a collection of connected covering
spaces of X0 and X1 and a collection of connected spaces of the form
Y X I, where Y is a covering space (1f Xz’ by gluing Y X {i} toa
covering space of Xi’ for i=0, 1. X looks likea graph I' witha
space at each vertex and a (space X I) along each edge. If I' were a tree,
then H would be a multiple amalgamated free product where each amal-
gamation is of the type A *o B and not A o In general, I' is a tree
T, with extra edges attached, and then H is a multiple amalgamated free
product together with HNN extensions. Note that the form of H one
obtains depends on the choice of a maximal tree T in T,

If G=A *c one can obtain a similar description of subgroups of
H. We take a CW-complex X0 with fundamental group A and a 2-
dimensional CW-complex X2 with fundamental group C and construct
X from X0 and X2 X1 by gluing X2 X oI to X0 appropriately.

We now introduce the terminology, due to Serre, of a graph of
groups to describe the above sort of structure in a group.

Note that the word graph means a 1-dimensional CW-complex, so
that a graph I" may contain a loop i, e, an edge with its two endpoints
identified. This gives rise to difficulties with orientations of such an
edge. In order to avoid these difficulties we first introduce the idea of
an abstract graph. Essentially this has twice as many edges as I', one

for each orientation of an edge of T.

Definition, An abstract graph I' consists of two sets E(I') and
V(T), called the edges and vertices of T, an involution on E(I') which
sends e to e, where e #e, and a map 3, : E(T') > V(D).
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We define 2 e = oOE and say that e joins 0 e to 3 e.

An abstract graph I" has an obvious geometric realisation IFI
with vertices V(I') and edges corresponding to pairs (e, e). When we
say that T" is connected or has some other topological property, we
shall mean that the realisation of T has the appropriate property. An
orientation of an abstract graph is a choice of one edge out of each pair
(e, e).

A graph of groups consists of an abstract graph I' (which will

always be tacitly assumed to be connected) together with a function §
assigning to each vertex v of T' a group GV and to each edge e a

group Ge’ with Gg = Ge’ and an injective homomorphism fe : Ge nd Gaoe'
One may think of I" as a partial category and § as a sort of functor.

Similarly we may define a graph X of topological spaces, or of spaces
with preferred basepoint: here it is not necessary for the map Xe-}Xaoe
to be injective, as we can use the mapping cylinder construction to replace
the maps by inclusions, and this does not alter the total space defined below
But we will suppose for convenience that the spaces are CW complexes
and maps cellular,

Given a graph X of spaces, we can define a total space XP as the

quotient of U {Xv cvev(D)luu {Xe x1:e €E(I} by the identifications

XeXI->XE><I by (x, t) = (x, 1 -1t)

X, x o-»xaoe by (x, 0) = f ().

If X 1is a graph of (connected) based spaces, then by taking fundamental
groups we obtain a graph § of groups (with the same underlying abstract

graph I'), The fundamental group GF of the graph § of groups is
defined to be the fundamental group of the total space Xl‘" Observe that

in the cases when I' has just one pair (e, €) of edges

A C B A@C
. . or

we obtain the products A o B, A o already discussed, as follows by

van Kampen's theorem (1.1 and 1. 2). The general case may be considered
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as derived by an iterated application of these constructions; however if
it is treated in this way, the underlying geometry is liable to be obscured
by computational complexities.

We now show that Gl" does not depend on the choice of X. First,
for any G we can choose (using presentations) connected 2-dimensional
CW complexes with 771(XV, *) = GV and nl(Xe, *) = Ge. By Lemma
1.5, the homomorphisms fe are induced by continuous maps
(Xe, *) = (Xa o x). This defines a graph X of connected based spaces
giving rise to® G. Next for any X we can attach cells of dimension = 3
to each Xv’ Xe to obtain aspherical spaces Kv’ Ke still with the same
fundamental group. Now the map fe : Xe - X8Oe extends to a map
ke : Ke -’Kaoe (there is no obstruction) so we have a new graph X of
spaces, still inducing §; its total space Kl" is obtained from XF by
adding cells of dimension = 3, so has the same fundamental group. But
Kv is a space of type (Gv, 1): its homotopy type is entirely determined
by Gv (similarly Ke’ Ge). Also the map LN is determined up to homo-
topy by fe : Ge - Gaoe' Thus Kl" is determined up to homotopy, and its
fundamental group is unique up to isomorphism.

In order to relate the topology more closely to the group theory, we
have insisted above on preservation of base points. However if the attach-

ing maps Xe - Xa o are altered by any homotopy (not necessarily base
0
point preserving), the homotopy type and hence the fundamental group of

X]."
g € ﬂl(X

are unchanged. If the base point is pulled round a loop defining

*), the homomorphism Ge - Ga e is changed by conjugation
g 0
by g. Thus even such a change will not alter G

° e’
0

=
Corresponding to and generalising (1. 6) and (1. 7) we now have the

Proposition 3. 6. (i) If G is a graph of groups as above, each

map GV g Gr is injective.
(ii) If X is a graph of aspherical spaces as above, the total space

KF is aspherical,

Proof. We start from the graph X of spaces. Observe that for

each vertex v of I', the space
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L =K U U (K XT1)

v v oo, e

o e=v
0
admits Kv as deformation retract, so its universal cover Lv is con-
tractible, Moreover, as each map Ge - Gv is injective, LV is obtained
from I~{V by attaching copies of Ke X 1 with f{e the universal cover of
Ke’ hence also contractible.
Now construct a space Y = UYn by induction. Choose any vertex

v, of T andset Y =L . Nowforany n=1, informing Y , 2
~ 0 ~
number of copies of Ke X I will have been attached (each along Ke X 0),

for various edges e. We define Yn to be the union of Y with a copy

ofi

9 e for each such copy of Ke x I, identified along I{le ]$< I. Since we
are at‘iaching contractible sets along contractible subsets, each Yn is
contractible,

Set Y= UYn with the weak topology. Then Y also is contractible,
There is an evident projection Y ->KF; by construction KI' is evenly
covered by Y. This proves (ii), and (i) follows since for each Kv C Kl"’

the induced covering of Kv contains the universal covering.

Remark., Assertion (ii) is equivalent to the exact sequences of
Chiswell [30]. A normal form, in the style of Theorems 1.6 and 1, 7, is
given by Higgins [32].

We can now state our first result about subgroups of amalgamated

free products.

Theorem 3,7. If G=A *CB or A *o and if HC G, then H is

the fundamental group of a graph of groups, where the vertex groups are

subgroups of conjugates of A or B and the edge groups are subgroups

of conjugates of C.

Remarks. This result has an obvious generalization to the case
where G is the fundamental group of a graph I' of groups. The theorem
covers the special case when the geometric realisation of I' has a single

edge.

There is a corollary of this result which is analogous to Corollary

3. 3 in the case of free products. We say that a group G splits over a
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subgroup C if G=A *o Or G=A *o B with A#C #B., If G splits

over some subgroup, we say that G is splittable. Note that Z is split-
table as Z = {1}*“}.

Corollary 3.8, If G=A *c
generated non-splittable subgroup of G, then H lies in a conjugate of A

B or A o and if H is a finitely

or B.

Proof. We know that H is the fundamental group of a graph T
of groups. As H is finitely generated, there is a finite subgraph I
whose fundamental group equals H. Now the fact that H is not splittable
implies that one of the vertex groups of I'' is equal to H. The result

follows.

Remark. The finite generation of H allows one to deduce that
some vertex group of I' equals H. If we consider non-finitely generated
subgroups H, we see that H need not lie in a conjugate of A or B. For
example, consider G=12Z o where the two inclusion maps are the
identity and multiplication by 2., Thus G has presentation {a, t:t_latzaz}
The subgroup H of G generated by t"at™™ for all integers n is isomor-
phic to the dyadic rationals and is therefore non-splittable, but of course

H cannot be contained in an infinite cyclic group.

We must now consider covering spaces more closely. Recall para-
graph 2 on page 138 of these notes. Let (X, XO) be a based connected
space with fundamental group G. Let H be a subgroup of G and let
(}~(, ;{0) be the corresponding connected covering space, with projection
map p: X, ;(0) - (X, x,). Thus D7 X, {{0)) =H.

Lemma 3,9. There is a natural bijection ¢ : H\G =~ p_l(xo), where

H\G denotes the quotient of G under the action of H by left multiplication

Remark., The path lifting property of covering maps can be used to

define bijections p_l(xo) »p '(x) for each x €X.

Proof. Firstwe definea map ¢ : G *p'l(xo). Given g € G,

choose a map (I, oI) = (X, Xo) representing g. We will call such a map
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a loop. Let I be the lift of this map starting at io and define
o(g)=1(1) € p'l(xo). This definition is independent of the choice of the
loop chosen to represent g.

The map ¢ is a surjection. For given y € p'l(xo), choose a path
{ in 5( from X, to y. Then p° ! isaloopin X representing some
element g € m x, xo) and ¢(g) =y. N

If ¢(g1) = ¢(g2), then lll;l is a loop in X based at ?{0, where
l; isa lift of a loop in X representing g.. Thus_f) ° (lll;l) represents
an element h of H and we have the equation g8, = h. Conversely if
glg;l =h €H, then g =hg and it is clear that ¢(g,) = 9(g,). Thus
¢(gl) = ¢(g2) if and only if glg;l € H and so ¢ induces a bijection
¢ :H\G~ p_l(xo).

Lemma 3.10. If H is a normal subgroup of G, then G/H acts

on X by covering homeomorphisms with quotient X.

Proof, Let g€ G andlet y € p_l(xo) be the point determined by
g. Then p*(nl(s(, vy = g_ng which equals H as H is normal in G.
The uniqueness of covering spaces corresponding to H shows that there
is a unique covering homeomorphism z,l/g c (X, 520) - X, y). Iclaim that
this process defines a homomorphism of G to the group of covering homeo

morphisms of X. One need only show that Vg g B =¥, oy, &), as
2

1°2 1
two covering homeomorphisms which agree on )”(0 must be equal by the

uniqueness result again. Let ll and l2 be paths in X starting at )”(0

which are lifts of loops in X representing g, and g, respectively.
Then ¥, © 1, isapathin X starting at ¥, () and still lifting a loop
1 1
in X representing g, Thus ng ° 12 begins where Zl ends and we
1

deduce that ¥ (io) = l[/g ol W)=y _ o wg (}?0) as required. It is
2

gng 1

clear that the kernel of this homomorphism is H, so that we do have an
actionof G/H on X.

The quotient of X by the action of G/H has a natural projection
m to X and 7 is a covering map. Also, for each x € X, 7 H(x) isa
single point as n_l(xo) is a single point, Hence 7 is a homeomorphism

and this completes the proof of the lemma.
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Before going further, we give an application of this result.

Theorem 3.11. If G=A x« B where A, B are non-trivial and H

is a finitely generated, normal subgroup of G, then H is trivial or has

finite index in G.

Proof. We suppose that H has infinite index in G and will prove
that H must be trivial. We know that H is the fundamental group of a
graph T" of groups, where the edge groups are trivial and the vertex
groups HA are subgroups of conjugates of A or B. If T is a maximal
tree in T, then H=F * (x* HA) where F is a free group whose genera-
tors correspond to the edges of I' - T. The fact that H is normal in G
tells us that G/H acts on T' with quotient an interval,

As H has infinite index in G, we deduce that I' has infinitely
many edges. As H is finitely generated, we deduce that T" - T is finite
and only finitely many of the groups HA are non-trivial. Thus H is the
fundamental group of some connected finite subgraph I'' of I'. Let E
be an edge of T' - I'', Then removing E from I gives two subgraphs
1“1 and 1"2 one of which has trivial fundamental group. As G/H acts
transitively on the edges of I', we deduce that every edge of I' has these
properties. Thus I must be a tree and at most one vertex group can be
non-trivial. Thus H is contained in a conjugate of A or B. As H is
normal in G, it must lie in the intersection of all conjugates of A (or of
B). But A nb 'Ab is trivial for any non-trivial element b € B, Hence
H is trivial. Q.E.D.

Exercise. 1Is there an analogous result when G = A *c B or
A *o ?

We now return to covering spaces. The aim of our next result is
to give a more precise structure theorem for subgroups of amalgamated
free products.

Let H be a subgroup of G = nl(X, xo), and let X, ;:0 be as before,
Let Y Dbe a subspace of X which containg X0 such that inclusion of
Y in X induces an injective map LA (Y, Xo) - X, XO). We denote the

image group by A and identify " (Y) with this subgroup of G.
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Lemma 3.12, There is a natural correspondence 6 between the

double cosets HgA and the components of p'l(Y) in X.

Proof. Let i denote the inclusion of p_l(xo) in p_l(Y) and
recall the map ¢ : G-»p‘l(xo). We define 6:G=p “(Y) by §=1ioc .
Suppose that B(gl) and H(gz) lie in the same component of
p '(Y). Then they can be joined by a path I in p '(Y). Let acA be
the element of 711(X, xo) represe111ted by the loop p o I. Then, by pro-

jecting into X, we see that g,0g, € H, so that g, = hgla for some

h € H. Converiely, if g, = hgla for some elements o« € A and h € H,
then lifting to X tells us that G(gl) and G(gz) can be joined by a path

I in p '(Y), where I is a lift of a.

Hence # induces the required bijection .

Lemma 3.13. Let g €G, y = ¢(g) € p‘l(xo) and let C be the
component of p_l(Y) which contains y. Let X be aloop in X repre-

senting g and let I be the lift of X which goes from :7{0 to y. Then
p, (7 (C, 320)) =H ngAg ', where we define 7 (C, )7:0) by using the path
L.

Proof. We know that p,(n (C, y)) C A, and so p,(m (C, io))CgAg'l
As p,(n (C, %)) CH, we have p,( (C, X)) CHngAg "

Consider an element 8= gag * of HngAg ', where o €A. Let
i be a loop in Y representing @. Then Tl s aloop in X repre-
senting . We know that ™' lifts to a loop in X, because f§ € H.
Thus A lifts to 2 and A™' liftsto Z~' and so M~ lifts to Zmi~
where m is some loop in p'l(Y) based at y. Therefore 8 lies in
p*(nl(C, :7{0)) and we have shown that p*(wl(c, io)) =Hn g;Ag_1 as

required.

1

We can now state a more precise version of the subgroup theorem.
Similar statements can be found in [4], [15], [22], [28]. For convenience
in the case G=A o where we have two injections il and i2 of C
into A, we identify C with i1 (C). Then iz(C) = t_ICt, and the subgroup

C=1i/(C) of A isalsoa subgroup of tAt~1,
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Subgroup Theorem 3.14. If H is a subgroup of G=A *o (or
A *o B), then H is the fundamental group of a graph I' of groups. The
vertices of T' correspond to the double cosets HgA (and HgB), and the
corresponding groups are H n gAg'1 (and H n ng_l). The edges of T

correspond to the double cosets HgC and the corresponding groups are
H ngCg .

I G=A *o B, the two ends of the edge HgC are the vertices
HgA and HgB and the injections of the associated groups are simply the

inclusion mappings.
If G=A o the two ends of the edge HgC are the vertices HgA

and HgtA. The injections of the associated groups are simply the inclu-

sion mappings.

A corresponding theorem for subgroups H of G, where G is the
fundamental group of any graph of groups, follows from the same lemmas,
We leave the precise formulation to the reader.

As applications of the subgroup theorem, we prove the following

results.

_ 1
Lemma 3.15. If G= Gl *C

subgroup of a conjugate of C, or i=1 and g € Gl, so that
-1 _
gGlg n Gi = Gl.

G,, then either gGlg_ NG, isa

Proof. Let H= gGlg'1

of a graph I" of groups. The vertices VsV, of T' corresponding to

n Gi' Then H is the fundamental group

the double cosets HgG1 and HGi have associated groups H n gGlg_le
and H N Gi =H. If \A and v, are distinct vertices of I', choose a
path in T" joining them. As the inclusion of each of the groups associated
to ViV, is an isomorphism with H, we see that each vertex and edge of
this path has associated group H. Thus H is the group associated to
some edge and so lies in some conjugate of C. The only other possibility
is that v, =V, This implies that i =1 and HgG1 = HGl. Thus g € Gl,
and the result is proved.

Next we give the promised example of a non-f. g. group G which
fails to satisfy the conclusion of Theorem 3. 5. This example is due to
Kurof [17].
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Example. The group G={a0,a a

[a

P WU < T « SO
1’72 1’72
a =12, bn]’ Vn=1} cannot be expressed as a free product of
indecomposable subgroups.

First observe that G= {a_, b} *Cl la, b} *Cz ..., where
each factor group is free of rank 2, each Ci is infinite cyclic, the inclu-

sion map C, = {ai, bi} sends a generator to a, and the inclusion map
c,~ {a; 1, by ;] sends the same generator to [ b
Next observe that

a4y Byl

.,b_,b la

G={bl} « {a LR

a =[an,bn],Vn22}EZ*G.

17727 n-1

Hence G can be expressed as a free product involving any given (finite)
number of factors. Hence G cannot be a free product of n indecom-
posables, for any integer n, as the proof of the uniqueness result of
Theorem 3.5 would apply to show that any factorisation of G has no
more than n factors - a contradiction. Hence if G can be expressed as
a free product of indecomposables, then G must have an infinite number
of factors. The last step is to show that this also is impossible.

Suppose that G = G1 * G2 * ..., where each Gi is indecomposable
and non-trivial, Consider the element a, of G. For some n, a, must
lie in Gl * L. K Gn’ which we denote by A. Thus G=A * B, with A
and B non-trivial and aO €A, Our decognposition of G as an infinite
amalgamated free product shows that each a is a non-trivial element
of G. The fact that a lies in A shows that a, bl lie in A, by
Lemma 3.16 below. As a €A, we see a,, b2 € A by the same lemma.
By repeating this argument, we see that G C A, contradicting the hypo-
thesis that B is non-trivial, This contradiction proves the required

result.

Lemma 3.16. Ifagroup G=A B, A # {1} # B, and if

g = [gl, gz] is a non-trivial element of A, then g, and g, lie in A,

Proof. TLet H be the subgroup of G generated by g 8,0 By
the Subgroup Theorem, H = (H n A) * C, for some subgroup C of H. We
must prove that H C A, If this is not the case, then each of HNnA and
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C is non-trivial and so Corollary 2, 1 of Grusko's Theorem shows that
each group is cyclic. Hence the abelianisation homomorphism H = H/H'
injects HnA and C., This contradicts the fact that g is a non-trivial

commutator in H n A, Hence H must be contained in A.

We finish this section by proving the famous embedding theorem of
Higman and Neumann [13] which states that any countable group can be
embedded in a 2-generator group, A nice example to consider is the sub-
group K of Fo, the free group on a and b, which is the kernel of the
homomorphismL F2 = Z, which sends b to a generator and a to the
identity. Let X~ denote the wedge of 2 circles, so that ™ (X) = Fz‘ The
covering space X of X corresponding to K consists of a copy of R
together with a circle attached at each integer point. Thus K has basis
{b™ab" :n € Z}. If one started with a countably generated free group
K= {xn :n € Z}, one would embed it in a finitely generated group by
adding an element b to K which makes all the xi's conjugate, More
precisely, one has the shift automorphism of K sending X to X410
for each n, and one takes the extension of K by Z determined by this
automorphism. The new group generated by X, and b is, of course,
isomorphic to Fz' The idea of the proof of the embedding result is to
do the same sort of thing in general, i.e. make lots of generators con-

jugate.

Theorem 3.17. If G is a countable group, then G can be em-

bedded in a 2-generator group.

Proof. Let Xy Xy v be a generating set for G. We embed G
in G1 =G x Z. Let t bea generator of %, and write v, = Xit’ Y, = t.
Then Gl is generated by Yor Yyo o and each A has infinite order,
-1 . .
Now let G = {Gl, PR A A }. Then G, is obtained

from G1 by an infinite sequence of HNN extensions and so G1 C G2.

A set of generators for G2 is Yy to’ t The subgroup K of

1t
G2 generated by the ti's is free and has the ti's as a basis, To see
this observe that by killing Gl one obtains a homomorphism of G2 toa
free group F which maps the ti's to a basis for F. Thus we can embed

K in F2 as in the discussion preceding the theorem and we let
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G3 = G2 *K F2. Again G2 C G3 and G3 is generated by Yy @ and b
where a denotes one of the ti's. Finally we observe that the subgroup
H of G3 generated by Y, and b is free of rank two. This can be seen
by applying the Subgroup Theorem, as H n G2 and HN F2 are infinite

cyclicand H n K is trivial. Thus we can construct G4 = G3 *p where
2

our two inclusions of F2 in G3 have images H and Fz. We choose
G, = {Gz’ s:stas=h, s'lbs=y0}. Then G, is generatedby a and

s which completes the proof of the embedding theorem.

4, GROUPS ACTING ON GRAPHS

The subject matter of this chapter is a reworking of the Bass-Serre
theory [22]. We consider a (continuous) action of a group G on a (topo-
logical) graph I': clearly this corresponds also to an action on the corres-

ponding abstract graph. We say that G acts without inversions if whenever

an element g of G fixes an edge e of I', it fixes each point of e. In
the abstract setting, this means that g. e = e is forbidden. Given any
action, the process of subdividing each edge once by an extra vertex in the
middle gives us an action without inversions.

The following simple example will be of use in Section 6. Let G be
a group, S C G a subset (not subgroup), I' = I'(S, G) the (geometric)
graph with vertex set G and, for each (g, s) € G X S a single edge
e(g, s) joining g to gs. There is an obvious action of G on T, where
h € G takes the vertex g to the vertex hg; the edge e(g, s) to the edge
e(hg, hgs). Only the identity element of G can leave a vertex or edge
fixed, so G acts freely (without inversions). Note that even if s?=1

we do not identify the edges e(g, s) and e(gs, s) with the same endpoints.

Proposition 4.1. (i) I' contains no loop <= 1 ¢8S.

(i) T is a simplicial complex < Sn S ' =g

(iii) I is connected <> S generates G.

(iv) T is atree «= S freely generates G.

Proof. (i) and (ii) are trivial.
If H denotes the subgroup generated by S, and I the full sub-
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graph on H, then I is open (there are no edges with just one end in I')
and connected (any word - e. g, slszs;1s4 -in S U S'l defines, in an
obvious way, a path in I'" joining 1 to the element in H it represents).
Now (iii) follows.

Finally if T is a tree, it is contractible; as G acts freely on T,
we have an isomorphism of G on LA (G\T, #). But G\I' is the graph
with one vertex and edges labelled by S, so its fundamental group is the
free group F(S). Moreover the composed isomorphism F(S) =+ G takes
s € F(S) to the class of the loop 's'; lifting this, we get the edge of T’
from 1 to s, which corresponds to s € G. This argument is reversible:
if S freely generates G, then G = F(S) = ™ (G\T', %), so I' is the uni-
versal cover of G\I', hence contractible - i, e, a tree.

Now suppose given a graph § of groups, with vertices v and
edges e corresponding to groups Gv’ Ge with GE = Ge, and injections

ae) : Ge -G As before, we choose a corresponding graph of con-

0 e’
nected spaces 0XV, Xe with total space XP’ and fundamental group Gr.
Since by (3. 6) the~natural maps Gv - GF’ Ge - GF are injective, the
1~1nive~rsa1 cover Xl" is a union of copies of the universal covers
Xv’ Xe ><~I. ~
In Xl'" identify each copy of Xv to a point, and each copy of
Xe i< I toa copy of I, giving a quotient space Z with pfojection
T XP =+ Z. Clearly Z is a graph. We define j: Z = XP by first
choosing for each vertex (edge) of Z a point V(E) in the corresponding
copy of f(v(f(e). Then divide each edge of Z into three parts: j maps
the middle part to E X I, and the end parts to paths in the connected space
}N(v joining the corresponding points E, V. Clearly 7 o j is homotopic to
the identity, so Z is connected and simply-connected, and hence is a tree.
The map 7 is compatible with the natural action of G on X,
so we inherit an action of Gl" on Z. This action has no inversion~s. The
isotropy group of each vertex (obtained from collapsNing a copy of Xv) is
a conjugate of Gv’ and of an edge (collapsed from Xe X I} is a conjugate of
Ge’ As G acts without inversions, GI“\Z is also a graph and in fact
coincides with the geometric realization '1"] of the original graph I':

there is an obvious map onto ’1‘! and each vertex (edge) of ’1"’ deter-
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. . . » s 5 x .
r~n1nes Xv(Xe X I) in XP’ hence a collection of copies of Xv(Xe I) in

Xl‘" transitively permuted by G,,, hence a single vertex (edge) of

’
GF\Z. Thus we recover the ori;inal graph G of groups from the action
of GF on Z., There is a slight problem here: how to choose the sub-
groups within their conjugacy classes to obtain the desired inclusions.
This will be dealt with below.

We now start from an action of a group G on a tree Y, having no
inversions, and show how to construct a graph of groups with fundamental
group G. Choose a connected CW complex U with fundamental group
G: then U is simply connected and G acts freely on it, hence also

(diagonally) on fJ X Y. Consider the quotient X and the projection
X =G\(U X Y) > G\Y = I, say.

Since G acts without inversions, I' is a graph and each vertex (edge) of
Y projects isomorphically onto one of I, For a vertex v (edge e) with
isotropy group GV (Ge) in G, we see that G\(INJ X v) (G\(INJ X €)) has
fundamental group GV (Ge). Thus X has the structure of a graph %X of
connected spaces realising a graph § of groups. Since G acts freely
on the 1-connected space (fJ X Y), we have G = m (X) the fundamental
group of §. Observe that U plays no essential role in the construction
of G, which could be expressed purely algebraically except for a certain
vagueness about conjugates which will be considered below.

In order to deal with the points at the end of the two preceding
paragraphs, and also to obtain a more precise formulation of the result
which can be used for explicit calculation with words, we must now con-
sider base points. The usual procedure with a CW-complex K is to
choose a maximal tree T 1in the 1-skeleton K(l) (a graph). This is
contractible and contains all the vertices. Hence K —K/T is a homotopy
equivalence, and K/T a complex with only one vertex, which we take as
base point. Thus the edges of K not in T give generators of ™ (K.

Now let G act without inversions on a (connected) graph Y, so
that X = G\Y is also a graph; let T be a tree in X containing the

vertex v, and let ¥ € Y lie over v,
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Proposition 4.2, There is a lifting j: T =Y of the inclusion of T

in X; moreover, we can take j(v) =¥,

Proof, Applying Zorn's Lemma, we see that there is a maximal
pair (T', j'): T' a subtree of T (containing v), j': T'=Y over the
inclusion (with j'(v)=+v). If T'+#T, let w be a vertexof T - T';
since T is connected, we can join w to v by an edge path, and at least
one edge in the path, say e, has one vertex v which is in T' and one
which is not. Now e is the image of an edge € of Y, one of whose
vertices ‘70 lies over A As 7/0 and j'(vo) lie over Vo they are
equivalent under G. If g.x?o = j'(vo), we can extend j' over e by
setting j(e) = g. €. This contradicts the supposed maximality and proves
the result.

Returning now to the action of G on the tree Y, we choose a maxi-
mal tree T in T = G\Y, a lifting j: T =Y with j(T) = i‘, and use
these as 'extended base points'. Over each vertex v of I' there is just
one vertex ¥ of T: we define G, as the stabiliser of v. If e isan
edge of T, we have the edge € = j(e), and call its stabiliser Ge' For
each other edge e of I' we choose anedge € of Y over e with
806 = (80e)~, and an element g, € G such that 816 = gq (31 e)~, and
define Ge to be the stabiliser of e. The map ao(e) is the inclusion

map; al(e) is induced by conjugation by ger Note that we have implicitly
chosen e from the pair (e, € (one could set e = (g;lé)_, g = g:,
but then would have GE # Ge).

We have considered two constructions above. Given a graph § of
groups, realised by a graph X of spaces, we defined a quotient Z of
}N(r, proved it a tree, and obtained an action of GF on it. Conversely,
given an action (all actions supposed without inversions) of a group G on
atree Y we defined (following (4. 2)), using certain choices (maximal
tree T, liftings %, E, elements ge) a graph of groups over I’ = G\Y.

The key result of the theory is

Theorem 4, 3. These two constructions are mutually inverse up to

isomorphism and (for graphs of groups) replacing the ai(e) by conjugate

homomorphisms.
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Proof, Most of the proof was given above., Starting from the
action of G on Y, the graph of groups over I' = G\Y is realised by a
graph of spaces with total space G\(fJ X Y), U a connected CW complex
with fundamental group G. The collapsing process on the universal cover
(fJ X Y) gives back the original tree Y and action of G on it.

Now suppose given a graph § of groups and construct (as above) an
action of the fundamental group GF on a tree Z. We have already ob-
served that the isotropy groups of vertices and edges agree up to conjugacy
with the images in GF of the given groups Gv’ Ge’ It remains to identify
the injections ozi(e), where more care is necessary.

Take X as a graph of based spaces, so we can identify I' with a
subset of X, and choose a maximal tree T in I'. Since T is contrac-
tible, we can lift it to T C ir. For each edge e of I'- T there is a
unique lift e C Xl" with 805 € ’i‘, and a unique g, € G with (g;I. 805) €T
Now § 1is isomorphic to a graph of groups in which each ao(e), and those
al(e) with e ¢ T, are inclusions; so we can identify each Ge’ GV with a
subgroup of Gl'"

Now 7 : Xr-> 7Z maps T isomorphically to a tree T over T.
Using the action of GF on Z to define a graph of groups as above, we
obtain the same subgroups Ge and GV; each ao(e) and those o (e)
with e € T are inclusions. For e ¢ T, o (e) is induced by conjugation
by gor In the given graph of groups o (e) was induced by the map
f(le : (Xe, *) = (Xale’ %), There is a unique path p in T joining ale to

aoe; as we have identified Ge (via Xe - Xaoe) with a subgroup of Gaoe’
the map f; cannot be regarded as preserving base points, which have to
be translated along the path p. Thus ozl(e) is induced by conjugation by
the element g'~ of GP represented by the closed path p.e. Now p lifts
to the path in T joining (ale)~ to (aoe)~= 06, so the lift of p.e. joins
it to 81 e. Thus g'. (ale)~ = (al e)~, which identifies g' with gq and

hence concludes the proof,

Remark. The reader may already have observed that our two in-
verse constructions can be formulated in purely algebraic terms. We feel

however that the above proof of the key theorem is more intuitive than any
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involving cancellation arguments,

We now note some special cases of the theorem.

Corollary 4.4. Let G\Y consist of a single edge Y_e__Y .

Then G=G_*, G_,.
VHe v

Corollary 4.5. Let G\Y consist of a single loop. Then Y con-
tains theedge v € &Voand G=G_ x. .
—_—— o - v He

A somewhat different application arises from considering free

actions. Of course, if G acts freely on a tree, it is free. The theorem
allows us to write down a set of free generators. Suppose in particular
that F is the free group on a set S, and G a subgroup of F. Write

down the graph I'[ for F: by (4.1) it is a tree, and the action of F on

S
it induces a free action of G.
Identify the vertices of FS

Then the path in the tree joining 1 to the element with reduced word

with the corresponding elements of F.

1:1 - tn (where each ti €ESU S'l) goes through the successive vertices

t tt,ttt,.... Thusif TCT
17 1727 17273 -
segments of the vertices of T.

Since the action of G is free, the lift of an edge of G\PS =X is

determined by its initial vertex. Thus the preferred lifts of the edges of

S contains 1, it contains the initial

X - T are just those edges of I"S whose initial vertex is in T but ter-

minal vertex is not. Applying the theorem we have

Proposition 4. 6. The left cosets of G in F are canonically

represented by the set R of vertices of ’i‘: if a reduced word w = uv

belongs to R, sodoes u. If W= {(t, s) eRXS:ts ¢R} and for each

w=(t s) €W we write s = g% with 8y € G, u, € R then

{gw w €W} isa free basis of G.

We conclude this section with brief mentions of two alternative
approaches. The first follows a paper of Serre [23]. We say that G has
property (FA) if for any action of G on a tree Y, there is a fixed point
of G in Y.

Theorem 4.7. G bhas (FA) ifand only if G is (i) unsplittable,

and (ii) not a union of an increasing sequence of subgroups.




Note that for countable G, (ii) is equivalent to being finitely

generated.

Proof. (FA)= (i) by Corollaries 4, 4 and 4. 5: any decomposition
induces an action without a fixed point. As to (ii), if G= UGn with
Gn C Gn+1 we form a graph with vertices U(G/Gn) and for each vertex
an an edge joining it to an+1. It is immediate that this is a tree, and
that the natural action of G on it has no fixed point.

Conversely if (i) and (ii) hold and G acts on Y, G is the universal
group of the graph of groups G\Y. By (ii), G is also the universal group
of a finite subgraph. If this subgraph is not a tree, G is splittable; if
the subgraph is a tree, we still have a splitting unless G coincides with
one of the vertex groups - i. e, has a fixed point in Y.

Some interesting examples of the above are given in Serre's paper
[23] and several more in his monograph [22, Chapter 6].

We conclude this paragraph by mentioning length functions. These
were introduced by Lyndon [34] to permit inductive arguments: they con-
stitute an axiomatic generalisation of the length of a reduced word as in
1.4, 1.6 or 1.7 above. It was shown by Chiswell [3] however that every
function satisfying the axioms defines an action on a tree and hence comes
from a decomposition of G as fundamental group of a graph of groups.

Thus here we have a further equivalent concept.

5, ENDS

The definition of ends, and construction of the end point compactifica-
tion (for a peripherally compact space) was achieved by Freudenthal in
1931 [9]; and the application to group theory initiated by himself [10], [11],
Hopf [14] and Specker [24]. We present a somewhat simplified version,
adapted to the present applications.

Let X be a locally finite simplicial complex. For each finite sub-
complex K, the number of connected components of X - K is finite;
denote by n(K) the number of infinite ones (equivalently, having noncompac
closure in X). Now define the number of ends e(X) = sup n(K). Clearly
e(X) = 0> X is finite; otherwise e(X) is a positive integer or +eo,
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If X=R and K is a point, clearly n(K) = 2. On the other hand,
any compact K is contained in a closed interval J :R - J has only two
components, and a component of R - K meeting neither is contained in
J, hence finite. Thus e(R) = 2. Similarly, since the complement of a
(large) disc is connected, e(IRn) =1 for any n= 2,

As _X is locally finite, for any finite K the (open) subcomplex
st(K) consisting of all simplices with a vertex in K is finite, and clearly
n(st K) = n(st K) = n(K). Now any point of X - (st K) can be joined by a
path avoiding st K to a vertex not in K, and if two such vertices can be
joined by a path avoiding st K, as none of the vertices of the simplices
met by the path are in K, we can find a path along edges not in st K. It
follows that in computing e(X) we may ignore all simplices of dimension
> 1, and work in the 1-skeleton. This can now be formalized. The co-
chain complex C*(X) of X (coefficients 22 = integers mod 2 understood
contains a subcomplex C%" (X) of cochains with finite support. Note: the
fact that CE‘(X) is closed under the coboundary follows from local finite-
ness of X, Write Cg(X) for the quotient complex, and HZ(X), HE"(X)
for the cohomology groups of C;(X), C%“(X). Then the short exact
sequence 0= C%“(X) -+ C*X) —» Cz(X) = 0 induces a long exact sequence
of cohomology groups.

Our interest in these comes from

Proposition 5.1. e(X) is the dimension of HZ(X) over Zz'

Proof. Observe that HZ(X) = G'I(C;(X))/C fO(X) is the quotient of
0-cochains with finite coboundary by finite 0-cochains. Also, by the
above, we may suppose X 1—diménsiona1.

Now if the 0-cochains Clyseny Cf define linearly independent
elements of HZ(X), as each tﬁci is finite we can choose a finite sub-
complex K containing the supports of all ﬁci. But then for each edge
e not in K, each N takes the same value at both ends of e. Thus for
each connected component A of X - K, each ¢ takes a constant value
ci(A) on the vertices of A, If there were only r < n infinite components
A, there would be a nontrivial linear relation inci(A) = 0 holding for all

such A. But then ZAici would be a finite cochain, contradicting our
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choice. Hence n = dim HZ(X) implies e(X) = n.

Conversely, if e(X) = n we choose K finite with n(K) = n, and
let Al, ceey An be distinct infinite components of X - K, Define the
cochain ¢ to take the value 1 on vertices of Ai’ 0 on other vertices
of X. Then if 6ci(e) =1, e has one end in Ai’ the other not (and hence
in K), so e is one of the finitely many edges of st K. So each ﬁci is
finite and, by construction, the ¢, are independent modulo finite co-
chains. Hence dim H_(X) = n.

We next construct another theory, analogous to the above. For any
group G, let PG be the power set of all subsets. Under Boolean addition
(*symmetric difference') this is an additive group of exponent 2. Write

FG for the additive subgroup of finite subsets. Now define
QG =1{ACG:VgeG, A+ Ag is finite ],

We refer to two sets A and B whose difference lies in FG as almost
equal, and write A 2 B. This amounts to equality in the quotient group
PG/FG. Moreover G acts by right translation on these groups, and
QG/FG is the subgroup of elements invariant under this action. Elements
of QG are said to be almost invariant. We define the number of ends of
G to be

e(G) = dim,, (QG/FG).
2

If G is finite, all subsets are finite and clearly e(G) = 0. Otherwise,

G is an infinite set which is invariant (not merely 'almost'), so e(G) = 1.
For finitely generated groups G we can identify these two definitions

as follows. Choose a finite set S of generators, and form the Cayley

graph FS = I'(S, G). Clearly this is locally finite.
Proposition 5. 2. e(G) = e(l"S).

Corollary 5.3. e(Z) =2, For {1} generates Z, and the corres-

ponding graph is homeomorphic to R.

Proof, We can identify the vertices of I', with elements of G,

S
and hence CO(PS) with PG and C;(I‘S) with FG. What we have to show,
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then, is that if the 0-cochain ¢ corresponds to the subset A, then
dc is finite < A €QG.

Now 6c is supported by the set of edges (g, gs) (g €G, s €8)
with just one end in A. For fixed s, this means that g belongs to just
one of A, As_l; i.e, geA +As” !, If A isalmost invariant, for
each s we have finitely many g, hence a finite number of edges in total.
Conversely if 0c is finite, the class of A in PG/FG is invariant under
each s (s €8), hence under the group, G, which they generate,

This connection can now be extended. .

Theorem 5,4, Let G act freely on the connected complex X,

with finite quotient K (equivalently, X =+ K is a connected regular cover-
ing, with group G). Then e(G) = e(X).

Proof. As before, we may suppose X a graph by ignoring cells
of dimension > 1. Let T be a maximal tree in K, T aliftto X. The
trees g’i‘ (g € G) are all disjoint; if we identify each to a point (obtaining
Y, say) HZ(X) is unaltered. Flor if ¢ has finite coboundary, it is con-
stant on all but finitely many gT, hence almost equal toa c¢' which is
constant on each. The natural map COY - COX preserves the subgroups
of finite cochains and of cochains with finite coboundaries, hence induces
Hg(Y) - HZ(X). This is clearly injective, and the above observation
proves it surjective.

We may thus suppose K/T has only one vertex. But now Y can
be identified with a suitable graph I‘S, ‘and the result follows from (5. 2).

Corollary 5.5, If G acts freely on R" with compact quotient,
e.g. it G= Zn, we have e(G) = 1.

The connection with topology is valid only for finitely generated G.
However, an interpretation in terms of group cohomology can always be
given. For any G, Hn(G; PG) = Z’2 (n=10), 0 (n#0). Moreover FG
can be identified with the group ring ZzG' The invariant subgroup
QG/FG = H°(G; PG/Z,G), and for G infinite, since H'(G; Z,G) =0,
we deduce that
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e(G) =1 + dim H'(G; z,G).

We now begin work on calculating the number of ends of various
groups. We start with lemmas noting the invariance of e(G) under

commensurability and isogeny.

Lemma 5.6. If H is a subgroup of finite index in G, e(G) = e(H).

Proof. If G is finitely generated, we may use (5. 2) and observe
that H acts freely on FS with finite quotient (a covering of G\FS, of
degree |G :H]J).

In general, if A C G is almost invariantin G sois A nH in H.
For (AnH)+ (AnHh=(A +Ah) nH is finite, for any h € H. Thus
intersection induces a homomorphism QG/FG = QH/FH. Choose a left
transversal T for H in G.

Now ¢ is injective, for if A n H is finite so is each Ag n H, hence
A nHg !, Letting g run through the finitely many elements of T ', we
deduce A is finite.

And ¢ is surjective, for if B C H is almost invariant consider
A =BT. Certainly AnH=B. Forany g e€G, t €T, write tg= hts
(s €T). Then A + Ag = Z(Bt + Btg) = Z(Bt + Bhts). But Bht is almost
equal to B, and s runs through T as t does. Hence A + Ag is finite.

Lemma 5.7, If K is a finite normal subgroup of G,

e(G) = e(G/K).

Proof. Write p: G—+ G/ for the natural map and
p, : PG~ P(G/K), p™' : P(G/K) » PG for the direct and inverse image
maps induced by p. Then ptp_lB =B for any B C G/K, while for
A CQG, p_lptA = AK. Trivially B is almost invariant <> p 'B is,
and if A is almost invariant it is almost equal to AK, so pt(A) is
almost invariant. Hence pt, p_1 preserve the subgroups Q and F and
the induced maps between QG/FG and Q(G/K)/F(G/K) are two sided
inverses, hence isomorphisms.

We now come to the main result of this section.
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Theorem 5.8, Suppose G {finitely generated, A € QG such that
both A and A* (=G - A) are infinite, andthat H= {h ¢ G : hA 2a}

is infinite. Then G has an infinite cyclic subgroup of finite index.

Since the left translations on PG commute with the right, there is
an induced action of G from the left on QG/FG. As H is the stabilizer

of A for this action, it is a subgroup.

Corollary 5.9. If G is finitely generated, ¢(G) =0, 1, 2 or

For suppose e(G) # 0, 1 or =, Then G is infinite (e(G) # 0) and
acts on the finite (e(G) # ©) group QG/FG. As -e(G) #1, we can find an
A as above; the isotropy group H has finite index in G, so is infinite.
Then by (5. 8) there is a subgroup Z of finite index which is infinite
cyclic, by (5. 6) e(G) =e(Z) andby (5. 3), e(Z) = 2.

We also have a characterization of groups with 0 ends (finite) or
2 ends (finite extensions of Z). Our next main objective will be a study
of groups with © ends. The restriction to finitely generated groups is
not essential: the result of Corollary 5. 9 is proved in Cohen's book [5]
for groups which are not locally finite; he also shows that a countable
locally finite group has <« ends, and (see Goalby [3]]) an uncountable one
also has 1 or

We begin the proof of (5. 8) with a lemma, which (together with the
corollary) will also be repeatedly used in chapter 6.

Lemma 5.10. Let Ao’ A1 €QG. For almost all g eAO, either
C * C
gAl 'Ao oL gAl _Ao'

Proof. Choose a finite set S of generators of G, and use (as in

(5. 2)) the action of G on FS' Pick connected finite subgraphs Ci of

FS containing 6Ai.

For each vertex ¢ of C_, gc eAO for almost all g eAO. As Ci

s
is finite, gCl n C0 =¢ for almlost all g € G. Hence for almost all g eAO,
we have gC1 nC0 = ¢, and gc eAO for each vertex c of Cl.

For any collection A of vertices of I', let A derote the maximal
subgraph of I' with vertex set equal to A. FEach component E of A—l

or KTI* contains a vertex of C,, so gE meets A : if it also meets A%,
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it meets CO. But C0 is connected and disjoint from gCl, so lies in a

single component gE. Thus A’g cannot meet both gA1 and gAT

Corollary 5.11. If Ao’ Al € QG, then for almostall g € G one
(at least) of gAl C Ao’ gA¥ CAo’ gA, CA’S, gA’lk c A’S holds.

Proof of 5.8, Interchanging A, A* if necessary, we may assume
H n A infinite. We may also adjoin 1 to A. By the lemma, for almost
all g €A either gA CA - {1} or gA* CA - {1}. Hence we can choose
c e H n A satisfying one of these: necessarily cA CA - {1}. We will
show that ¢ generates the required subgroup.

If n>0, cTACcACA, Thus c¢"#1, so ¢ has infinite order,
As 1 €A, " €A for n> 0, and as c"ACA- {1} for n> 0, we
have ¢ ™ €A* for n> 0.

If denf{c™ :n> 0), then ¢ ™ cAd ! for n> 0, contradicting
the fact that Ad™® + A is finite, and all the ¢ distinct. Hence
n{c™:n> 0} =¢. So

+1

A=u{c"™-c"""A:n=0)}

U{e™A -cA):n=0)

is contained in the union of finitely many (right) cosets of {¢) in G:
recall that ¢ € H, so A - cA is finite. The same holds for A* (re-
placing ¢ by c_l). Hence the infinite cyclic subgroup (c) has finite

index in G.

Alternate proof of 5.8, As before, we may assume that Hn A is
infinite. Lemma 5. 10 and its proof tells us that for almost all g €A,
g(6A) n A is empty and either gA C A or gA* C A. Hence there is an
element ¢ of H nA, suchthat c(6A) n 6A is empty and either cA C A
or cA* CA. As cA is almost equal to A, we must have cA CA and
the inclusion must be strict, as c¢(6A) n 6A = ¢, Let B=A + cA. Then
B is non-empty, finiteand B CA, B n cA = ¢. Further for any two
integers r, s, with r > s, we have ¢'Bnc°B=¢. For
¢"Bne®B=c%c""®BnB), and ¢ °BCc""5A CcA. Thus
< SBaBCecA nB=¢.
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Now consider 2 an, which equals U "B by the above,
nez nez

As 6 is additive, we have 6( "Bl =3 (c“aA + cn+16A) =0.
nez nez n
(Note that these infinite sums make sense.) Thus U ¢ B must equal

nezZ
G, and so the cyclic subgroup of G generated by ¢ has index equal to

the order of B, As G is infinite, ¢ must have infinite order and the
result follows,

One can also give a more direct proof of the result (5. 9) that a
finitely generated group must have 0, 1, 2 or « ends. Let G bea
finitely generated, infinite group and suppose that- e(G) is a positive
integer n. Choose a finite generating set for G andlet T" be the
corresponding graph, G acts on I' on the left with finite quotient, Let
L Dbe a finite connected subgraph of I suchthat I' - L. consists of n
infinite components Vl, ey Vn. As G is infinite, there exists g ¢ G
with gL n L = ¢. Thus gL lies in one of the V's, V1 say. Exactly
one of the components of Vl - gL is infinite, for I - (L. U gL.) has only
n infinite components. Now L U V2 U... U Vn is connected, so that
I' - gL, has at most two infinite components. As g is a homeomorphism,
I' - L. must have at most two infinite components and this proves the
required result,

We finish this section by giving some more information about

groups with two ends.

Theorem 5.12. The following conditions on a finitely generated

group G are equivalent:
i) e(G) =2,

(ii) G has an infinite cyclic subgroup of finite index,

(iii) G has a finite normal subgroup with quotient Z or_ Zz * Zz’
(iv) G=F xp with F finite, or G=A *p B with F finite and
|A:F|=|B:F| =2

Proof, (i)= (ii) by Theorem 5.8, for H will have index at most
2 in G.
(ii)= (i) by Lemma 5. 6 and the fact that e(Z) = 2.

(iiiy=(iv) I F is a finite normal subgroup of G with quotient
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Z, then G=F g
A and B are the inverse images of the Zz—factors. Thus
|A : F| = |B :F! =2 as required.

(iv)= (iii) If G=F *p with F finite, then both inclusions of F
in F must be isomorphisms and so F is normal in G with quotient Z.
If G=Axp B, with F finiteand |A:F|=|B:F|=2, then F is
normal in A and B. Hence F is normal in G and
G/F=(A/F) x (B/F) = ZZ * Z2.

(iii)= (i) by Lemma 5. 7. Note that Zz * Zz is isomorphic to

If the quotient is Zz * Zz’ then G= A *p B, where

D(), the infinite dihedral group, and so has two ends.

Finally, we prove (ii)= (iii), to complete the theorem.

First, G must contain an infinite cyclic subgroup K of finite index
which is also normal in G. One takes for K the intersection of all the
conjugates of the original infinite cyclic subgroup. Let H denote the
centralizer of K in G. Thus ’G : H’ = 2. H is finitely generated and
its centre is a subgroup of finite index. A theorem of Schur (see e.g.

W. R. Scott, Group Theory, Prentice-Hall, 1964, §15, 1. 13) tells us that
H', the commutator subgroup of G, is finite, Now H/H' must have
rank 1, and so there is an epimorphism ¢ : H = Z with finite kernel L,
If G=H, our result is proved. Otherwise observe that H is normal

in G and L is characteristic in H, as L is the torsion subgroup of H.

Thus L is normal in G and we have the exact sequence
1->H/L->G/L->Zz->1.

We know that G/L. must be non-abelian, and therefore G/L is isomor-

phic to Zz * Zz' This completes the proof of Theorem 5, 12,

6. THE STRUCTURE THEOREM FOR GROUPS WITH INFINITELY
MANY ENDS

The aim of this section is to describe which finitely generated groups
have infinitely many ends. The neatest formulation of the result includes

the case of two ends.
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Theorem 6.1, If G is a finitely generated group, then e(G) = 2

if and only if G splits over a finite subgroup.

Remark. Theorem 5.12 tells us that e(G) =2 if and only if
either G=F *F with F finiteor G=A *p B with F {inite and
|A:F|=|B:F|=2

This remarkable result is due to Stallings [37], [26], but our treat-
ment of the proof is an amalgam of results of Cohen [5], Dunwoody [7] and
Stallings [26].

There is a close connection between Theorem 6. 1 and the Sphere
Theorem. In fact, Stallings discovered the result by considering the
proof of the Sphere Theorem due to Papakyriakopoulos [19] and Whitehead
[29]. -

Sphere Theorem, If M is an orientable 3-manifold with 712(M) #0,

there is an embedded 2-sphere S in M which represents a non trivial

element of 7, (M).

Let M be a closed orientable 3 manifold with fundamental group G.
One can show easily (see below) that the hypothesis that nz(M) is non-
zero is equivalent to asserting that e(G) = 2. Also the conclusion of the
Sphere Theorem implies that G splits over the trivial subgroup. Thus
the Sphere Theorem is extremely like Theorem 6.1, when M is a closed
manifold, Further, it is possible [26] to give a proof of the Sphere Theor-
em which uses Theorem 6. 1.

~The reason why nz(M) #0 if and only if e(G) = 2 is as follows.
Let M denote the universal covering space of M. Then Theorem 5, 4
tells us that e(G) = e(1\71). For these purposes it will be convenient to
use coefficients Z, not Zz’ when defining the groups Hn(f/l), H?(fﬁ),
H2(1\~/I). The natural analogue of Proposition 5.1 is that e(l\7[) equals
the rank of Hg(1\71), where the rank of an abelian group is defined to be
the maximal rank of all finitely generated free abelian subgroups or
if this maximum does not exist. Now consider the long exact sequence
connecting the groups Hn(1\71), H?(IVI), H2(1\7I). This begins

Hg(fa) - "' (M) > Hg(f/x) - H;(fa) "M -, .
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As H1(1\7I) = 0, we see that e(1\~/I) = 2 if and only if H; (1\~/I) is non-zero.
Now Poincaré duality for M give~s an isomorphism between H; (M) and
HZ(M), and we have Hz(M) = wZ(M) = 7/2(M). Thus 712(M) +0 ifand
only if e(G) = 2.

The conclusion of the Sphere Theorem implies that G2 A *o (S)B
1

or A * o () according to whether S separates M or not. As m (8) is
1
trivial, this implies that G splits over the trivial subgroup unless S

separates M into two components one of which is simply connected. We
show that this is impossible. If this did happen, we would have a compact,
simply connected 3-manifold X with boundary a 2-sphere. Hence
Poincaré duality tells us that HZ(X, 3X) = H'(X) = 0. Now the exact
homeology sequence of the pair (X, oX)

0 ->H3(X, oX) -’HZ(BX) —>H2(X) ->H2(X, X)) —>...

shows that HQ(X) = 0. The Hurewicz Theorem then implies that nz(X)= 0,
so that S is null-homotopic in X, contradicting our assumption on S.
A purely group theoretic result, which follows easily from Theorem

6.1 is the following.

Theorem 6.2. If G is a finitely generated, torsion free group with

a free subgroup of finite index, then G is free.

Remark. Swan [27] has extended this result by removing the restric-

tion that G be finitely generated.

Proof, Let u(G) denote the minimal number of generators of G.
If u(G) =0, then G is trivial, so the theorem holds. If w(G) > 0, then
G is non-trivial, As G cannot be finite, G has a non-trivial free sub-
group F of finite index and so e(G) = 2. Thus Theorem 6.1 tells us
that G splits over a finite subgroup. Now the only finite subgroup of G
is the trivial subgroup, so that either G=Z or G = Gl * Gz’ where
each Gi is non-trivial. In the first case, our result is proved. In the
second case, we observe u(Gi) < u(G) by Corollary 2.1 and that F n Gi
is a free subgroup of G.1 which is of finite index. Thus the required

result follows by induction on u(G). Note that we have used the fact that
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subgroups of free groups are free.
We now come to the proof of Theorem 6. 1 and we start with the

easy half.

Lemma 6.3. If G splits over a finite subgroup, then e(G) = 2.

Remark. For this result, G need not be finitely generated.

Proof. It suffices to produce an almost invariant subset E of G
such that E and E* are infinite,

First suppose that G=A *o B, where C is finite, and recall the
canonical form for elements of G given by Theorem 1. 6. One chooses
based transversals T A and TB for C in A and B and obtains the
form alb1 anbnc for any element of G, where c €C, a; €T,,
bi eTB and ai=1=> i=1, bi:I: i=n. Let E be the subset of G
consisting of elements for which a, is non-trivial. Clearly E and E*
are infinite. (This uses the factthat A #C # B,) If b ¢ B, then Eb =E.

If a €A, then EaCEUC andsoalso Ea ' CE uC. Hence
ECEauCaCEUCUCa

sothat E2Fa. As A and B together generate G, we have EgaéE
for all g in G.

Secondly suppose that G =A o where C is finite, and recall
the canonical form for elements of G given by Theorem 1.7. One
chooses based transversals Ti of ai(C) in A and obtains the form
€ € £
atlat?...at’a

1 2 n

wher €A, a, € if €, =1, a, €T
ere dhn 1 3y Tlfl » 34 2

n+1’ n+
if & = -1, and moreover a, # 1 if CHER Let E be the subset of
elements of G for which a, is trivial and e = 1. If a €A, then
Ea=E. Also EtCE and Et ' CE v a (C). Therefore, as before,
E 1is almost invariant in G. This completes the proof of Lemma 6. 3.
The hard part of Theorem 6.1 is the result that a finitely generated
group G with infinitely many ends must split over a finite subgroup. Our
aim, following Dunwoody [7], is to produce a tree T onwhich G acts
with quotient a single edge. We start by considering graphs and trees in

more detail than before. Let I' be an abstract graph.
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RIEEEEELN of
for i=1, 2, ..., n-1.

Definition. An edge path in I" is a sequence e
edges such that al e, = aoei+1 and e # €41
If e, f are edges of T', we will write e ={ if there is an edge path with

e =e and e ={,
1 n

The relation = has the following properties.
(A) For any graph I, the relation = is reflexive and transitive.

(B) For any graph I' and any edges e, f of I, if e=<f then f =<',
(C) The graph I is connected if and only if for any pair e, f of edges
of T, atleastoneof e=<f, e=<T, e=f, e <f holds.

(D) The graph I has no circuits if and only if whenever e ={f and
f=e, then e =1,

(E) If T has no circuits, then for no pair e, f of edges can we have
e=<f and e =T,

(F) If T has no circuits, then for any pair e, f of edges there are
only finitely many edges g with e =g =1.

If a relation satisfies the conditions in (A) and (D), we shall call
it a partial order. Thus if I'" is a tree, the relation = on E(I') isa
partial order and the following conditions hold.

(1) If ex<f, then T=<e,

(2) If e, f ¢ E(T), there are only finitely many g € E(T') such that
e<g=H{

(3) If e, f €E(T), at least one of e<f, e <T,

e=1, e =T holds.
(4) If e, f €eE(T), we cannot have e=<f and e =1,

Remark. If two of the inequalities in (3) hold, then e =f or e =1.

The next step is to show that if we start with a partially ordered set
E satisfying all the above conditions, then we can construct a tree out
of E.

Let E be a partially ordered set with an involution e ='e, where
e # e, and suppose that conditions (1)-(4) hold. Write e< f if e=<f
and e #f. Write e<<f if e< f, and e<g =1{ implies g=e or
g = 1. We need the following technical result.

Lemma 6. 4. The relation ~ on E, definedby e ~f if and only if

e=1 or e<<T, is an equivalence relation.
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Proof. The relation is obviously reflexive and is symmetric

because e << T implies f << e.

We suppose e ~1f and e ~h and will show f ~h. The first step
is to show that f =h or f<h. Condition (3) implies that one of f=h,
f<h,T=h, f<h holds. If f=<h, then h =T and we would have
e < h =T which implies h=1f as e<< I If f<h, then e< f=h
implies h=1f as e<<h. If f<h, we would have e < f<h. As
e = h, this contradicts (4). The only remaining possibility is f < h.
Hence either f=h or f< h as required.

The last step is to suppose < h and f =g =<h andprove g=1
or g =h. One of the inequalities e<g, e<g, e< g, e < g must hold.
If e<g, then e <h, As e =h, this contradicts (4). If e =g, then
‘e =T which again contradicts (4). If e< g, then ‘e < g =<h shows that
g=h as e<< h. If e< g, then e< g=7T shows that g=1f as
e<< f, Hence g=1 or g="h as required. This completes the proof
of Lemma 6. 4,

We construct a graph T' out of E as follows. Let t(e) denote the
equivalence class of e in E under the relation ~. Let V = {t(e):ecE }
and let Boe =t(e). Then the sets E, V and the map 80 form an abstract

graph T,

Theorem 6.5, T is a tree and the order relation which I' induces

on E is the same as the original relation.

Proof. We will prove the second part of the theorem. The fact
that I' is a tree will then follow from properties (C) and (D). Lemma 6.4
tells us that for distinct elements e, f of E we have t(f) =t(e) if and
only if e << f. Thus ale = aof if and only if e << f. It follows that if
e and f are joined by an edge path in T, then e = f, and condition (2)
shows that if e =f, then e and f can be joined by an edge path in T.
Hence I' does induce the original order relation on E, as required.

Consider the following examples of Theorem 6. 5 in action.

Let G be the free group of rank 2 with generators a, b and
let T' be the corresponding graph for G. If e is an edge of T it
separates I' into two components. Thus G =A U A* where 0A=0A*=e,
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Let E be the set of all subsets A of G with 0A equal to a single edge
of I'. We partially order E by inclusion. Then E has an involution
A = A* and satisfies conditions (1)-(4). The tree constructed in Theorem
6.5 is the graph I' again,

One can obtain an action of G on a different tree T as follows.
Let A be the subset of G which contains a and whose coboundary is
the edge (e, a) of I. Let F be the set of all translates gA, gA* of
A and A*, partially ordered by inclusion. Again F satisfies conditions
(1)-(4). Hence we can construct a tree T from Theorem 6.5, The
natural left action of G on F induces anactionof G on T which has
quotient a single edge, Let g be an element of G such that gA = A or
A*, Then g(0A) = 0A so that the edges (g, ga) and (e, a) are equal,
This is only possible if g = e so that G acts on T without inversions
and the stabilizer of any edge of T is trivial.

Recall that t(A) consists of A together with every element B of
F such that A << B*. We will call an edge of I" of the form (g, ga)
an a-edge, and an edge of the form (g, gb) a b-edge. If A << B*, then
6B is an a-edge of I" which has no vertices in A and such that the path

from OB to 0A consists only of b-edges. It is now easy to see that
tA)=1{b"A :neZ}u b2 'A*:n 7).

Hence the stabilizer of t(A) is the infinite cyclic subgroup H of G
generated by b. One can also see that aOA = BIA* = aalA. Hence G
acts transitively on the vertices of T, sothat G\T is a loop. This
actionof G on T corresponds to expressing G as H x 1} The graph
T 1is obtained from I by identifying each b-edge of I to a point,

We can now sketch the proof of the main part of Theorem 6.1, i.e.
if G is a finitely generated group and e(G) = «, then G splits over a
finite subgroup. The idea is to proceed, as in the example above, to
construct a tree T on which G acts so that the stabilizer of any edge is
finite and the quotient G\T is a single edge. However, we need to
partially order our almost invariant sets by almost inclusion and not by
strict inclusion in order to be able to prove that condition (3) holds.

For any almost invariant set B of G, write [B] for the set of all
almost invariant sets of G which are almost equal to B. Define [B] = [C]
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if and only if B % C. Fix a proper almost invariant set A of G i.e.

A and A* are infinite, and let E be the set of [gA] and [gA*] for all
g in G, partially ordered by =, We have the involution [A]=>[A*] on
E. Our aim is to choose A so that E satisfies conditions (1)-(4).
Assuming that we can do this, we can construct the required tree T. The
stabilizer of the edge [A] will be finite because {g € G : gA 2A} is
finite by Theorem 5.8. G may invert edges but if so we simply subdivide
T. Hence, by Theorem 4. 3, G is an amalgamated free product over a
finite subgroup F, Hence G splits over F so long as no vertex of T
has stabilizer equal to G. We show that this is impossible.

Suppose that G fixes a vertex v of T. Then every edge of T
has v as a vertex., In particular, v must be one of the original vertices
of T, and was not introduced by subdivision. Now we consider the original
T. If e and { are edges of T with e < f, we have e << {. Now Lemm
5.10 tells us that for almost all elements x of A, XA CA or xA* CA,
As {geG:gA2 A} is finite, by Theorem 5. 8, we deduce that there is
an element x of A such that xA is not almost equal to A or A* and
either XA CA or xA* C A, Similarly, there is an element y of A*
such that yA* is not almost equal to A or A* and either yA C A* or
yA* C A* If xA C A, then we have x?A C XA C A and this contradicts
the fact that if e, f are edges of T with e < {, then e << {, Similarly,
if yA* C A* we obtain a contradiction. If xA* CA and yA C A*, then
xyA C xA* C A and again we have a contradiction. Therefore G cannot
fix a vertex of T,

In order to complete the proof of Theorem 6.1, we must show how
to find a proper almost invariant set A in G such that the partially
ordered set E satisfies conditions (1)-(4). Conditions (1} and (4) hold
automatically for any choice of A, Our next result says that condition

(2) also holds for any choice of A.

Lemma 6.6 Let G be a finitely generated group with infinitely

many ends. If B, C, D are proper almost invariant subsets of G, then
; a a
{g €eG:BCgC CD} is finite,

Proof, The result is trivial if B is not almost contained in D. If
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B is strictly contained in D, we can add an element of D* to B with-
out altering the problem. Hence we suppose that B Ca D but B¢D.

If B é gC & D, then either gC ¢ D or B ¢ gC. We will show that
{g €eG:gC gD, gC ¢« D} and {gEG:B%gC, B ¢ gC} are both
finite. This will prove the required result. Now Corollary 5. 11 states
that for almost all elements g in G one of g€C C D, g€C C D*, gC* CD,
gC* C D* holds. If gC &D and gC ¢ D, none of these four inclusions
can hold except for gC* C D*, If gC & D and gC* C D*, then gC 2 D,
As {g€G:gC 2¢) is finite, by Theorem 5. 8, we deduce that
{g €eG:gC éD, gC ¢ D} is finite. Similarly {g €eG: B é gC, B¢ gC}
is finite,

Finally, we show that it is possible to choose A so that E satisfies
condition (3). Note that for almost all g in G, we know that one of
gA C A, gA CA* gA* C A, gA C A* holds. We must arrange that this
holds for every element of G, when we replace strict inclusion by almost
inclusion,

We fix a finite generating set S for G andlet I' =TI'(S, G) be the
corresponding graph. If A is an almost invariant set in G, we denote the
number of edges in 0A by |6A|. Let k be the smallest value taken
by |6A] as A ranges over proper almost invariant sets in G. We say
that a set A in G is narrow if [6A| =k,

Lemma 6.7. Let A1 D A2 D ... be a sequence of narrow sets
in G, If B= N A _is non-empty, then the sequence stabilizes, i.e.
n=1
there is an integer K such that An =B, when n =K,

Proof, Let e be an edge of 6B. Then e has one vertex in every
Arl and the other vertex is outside every An for which n exceeds some
integer N, Therefore e is an edge of 6An, when n> N, If 6B con-
tains k + 1 edges, the above argument shows that éAn would also con-
tain k + 1 edges for a suitably large value of n. It follows that
IGBI =k and that 6B C GAn for all suitably large n. In particular, B
is almost invariant in G. We have the equations An = (An + B) + B and
ﬁAn = 5(An + B) + 6B. As 6B C éAn we see that O(An + B) n 6B is
empty. As An is infinite, one of B and (An + B) must be infinite,
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The infinite one, X, must have ]6X] =k, as X is a proper almost
invariant subset of G. The other one must then have empty coboundary
and so be empty. As B is non-empty, we deduce B :An, which
completes the proof of the lemma.

Let g be any element of G, and let A be a narrow set in G.
Then A* is also narrow so that g must lie in a narrow set in G.
Lemma 6, 7 tells us that the set of all narrow subsets of G which contain
g has minimal elements, where we partially order narrow sets by

inclusion,

Lemma 6.8, Let A be a narrow set, minimal with respect to

contalmng some element g of G Then for any narrow set A one of
A CA , A CA* Ax* CA , A% CA* holds.

Proof. The required result is equivalent to proving that one of the
sets A nA , An A* A*n A , A*n A* is f1n1te For convenience we
call these sets X1’ Xz’ Xs’ X4. For each i, GX CoHoA U 6A As the
Xi's are disjoint, any edge in 6A U GAl has its ends in exactly two of the
Xi's. Hence each edge in 6A U ﬁAl lies in the coboundary of exactly two
of the Xi's. Hence

[6x | + [6X_ | + |oX | + |oxX | =2]6A v oA_| = 4k,
1 2 3 4 1

where [6A] = ]6A | =k

If each X is infinite, then we must have IGX ] =k for each i,
because each X;“ is infinite. Hence ]6X | =k for each i. But one of
An Al, An A’Ik (say A n A1) is then a narrow subset of G which con-
tains g. Hence A n Al = A by the minimality of A, andso A n A’l‘K is
empty - a contradiction., Therefore some Xi must be finite which com-
pletes the proof of LLemma 6. 8.

In order to carry out the proof of Theorem 6.1 as sketched after
Theorem 6. 5, we simply need to choose a narrow set A in G which is

minimal with respect to containing some element of G,
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7. APPLICATIONS AND EXAMPLES

Many of the most important applications of Stallings' structure
theorem for groups with infinitely many ends have to do with the cohom-
ology of groups. We will only consider more simple minded examples.
We start by discussing the problem of accessibility first posed by Wall
[28].

Think of a splitting of a group over a finite subgroup as a kind of
factorization. Stallings' theorem tells us that if G is finitely generated
and e(G) = 2, then G has such a factorization. The first natural question
to ask is whether one can go on factorizing G for ever, or whether the
process of factorization must stop.

We will say that a f.g. group with at most one end is 0-accessible,
and that a group G is n-accessible if G splits over a finite subgroup
with each of the factor groups (n-1)-accessible. We will call a group

accessible if it is n-accessible for some n.

Conjecture. Any finitely generated group is accessible.

Bamford and Dunwoody [1] have shown that accessibility is equivalent
to a certain condition on the cohomology of the group, but, in general, one
has no proof that their condition is satisfied. However, it is easy to see
that any f. g. torsion free group G is accessible. Corollary 2. 2, which
follows from Grusko's Theorem, tells us that G is a free product of
indecomposables. Each factor in this decomposition has at most one end
or is infinite cyclic and so G is accessible.

The following result seems to clarify the concept of accessibility.

Lemma 7.1. Let G be a finitely generated group. Then G is

accessible if and only if G is the fundamental group of a finite graph T

of groups, where each edge group is finite and each vertex group has at

most one end.

Proof. If T exists, G is obviously accessible, We prove the
converse by induction on n, where G is n-accessible. If n =0, we can

take I' to be a single vertex.

If G=G1 * G2 where G1 and G2 are already the fundamental

C
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groups of graphs I', and T, of groups, and C is finite, we construct
I" as follows. By Corollary 3. 8, there are vertex groups Hl, H2 of
I, I, andelements g, g of G,, G, such that Ccc gi-lHigi’ for
i=1, 2. By replacing every vertex and edge group H of 1"1 by
ngg;l we can suppose that C C H, and similarly for I',. Now T
consists of Fl, F2 and an edge e joining the vertices underlying H1
and Hz’ where e has associated group C.

If G=A *c where A is already the fundamental group of a graph
Fl of groups, and C is finite, we proceed as follows. We have two
inclusions @, a2 of C in A and each ai(C) must lie in a conjugate
of some vertex group Hi of 1“1. As above, we can suppose that
al(C) C Hl, and az(C) C sts'l. (Note that possibly H1 = H2.) Now
G has presentation {A, t: t‘lal(c)t =a(c),VeeC }. Write u=ts.
Then G also has presentation {A, u: u‘loz1 (c)u = s_loz2 (c)s, Vc eC}.
We replace a by [32 where Bz(c) = s_laz(c)s. As BZ(C) C Hz’ we
can take I' to be 1"1 together with an edge e joining the vertices of 1"1
which underlie H1 and Hz’ where e has associated group C.

We can now re-define accessibility to allow for infinite factorization.
A group is accessible if and only if it is the fundamental group of a graph
of groups in which every edge group is finite and every vertex group has
at most one end. For f.g. groups, this is equivalent to the old definition,
One can ask if all groups are accessible, but the Kuros example in Section
3 shows that the answer is negative, For Kuros's group is an infinite
amalgamated free product of free groups and hence is torsion free. Thus
his group is accessible if and only if it can be expressed as a free product
of indecomposable subgroups.

There is one other class of groups known to be accessible. That is
groups with a free subgroup of finite index. We have already shown
(Theorem 6, 2) that if such a group is torsion free it must be free, We
now state a general structure theorem for such groups. This was proved
by Karrass, Pietrowski and Solitar in the f. g. case [16], Cohen in the
countable case [6], and Cohen [6] and Scott [20] in the general case. See

also Dunwoody [ 7] for a more recent proof.
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Theorem 7.3. A group G has a free subgroup of finite index if
and only if G is the fundamental group of a graph I' of groups in which

every vertex group of I' is finite and the orders of all the vertex groups

are bounded.

Remark. We will prove this theorem only in the case when G is
f.g. We can then assume that I' is finite, so that the boundedness con-

dition is redundant.

Proof. Suppose that G is f.g. and has a free subgroup of finite
index., We will show that T' exists by induction on r(G), where r(G) is
the minimal rank of free subgroups of G of finite index. I r(G) =0,
then G is finite and the result follows. If r(G)> 0, then e(G) =2 so
G splits over a finite subgroup. If G=A *o B,or G=A oo I claim
that r(A) and r(B) are each less than r(G), so that the result will
follow by induction as in the proof of Lemma 7.1. Let F be a free sub-
group of G of finite index and of minimal rank. As C is finite, F meets
any conjugate of C trivially. Hence the Subgroup Theorem applied to
FCA *CB or A*C tells usthat F= (FnA) * (FnB) *K or
F =(F nA) x K, for some subgroup K of F. Hence the ranks of F nA
and F n B are each less than that of F unless one of them equals F.
But then we would have F contained in A or B which is impossible as
F has finite index in G, but A and B have infinite index in G.

Now suppose that G is the fundamental group of a finite graph T°
of finite groups. We use induction on the number n of edges of TI'. If
n =0, then G is finite and the result is obvious.

If n=1, wepickanedge e of I with associated group C. Then
G=A *c B or A *o according to whether e separates I' or not, where
A and B are the fundamental groups of the subgraphs of I' obtained by
removing e, Thus, by our induction hypothesis, each of A and B has
a free subgroup of finite index and hence a normal free subgroup of finite
index. Let Al, B1 denote the quotients of A and B by their normal
iree subgroups of finite index. As C is finite, the natural maps from A
and B to A1 and B1 both inject C. Hence we have a natural map

A*CB—>A1* B1 or A*C_)Al*

C which injects any finite subgroup

c’
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of G. Lemma 7.4 below tells us that there are maps of A1 *c Bl or

Al *c to a finite group which inject A1 and B1’ By composing these
maps we obtain a homomorphism from G to a finite group which injects
every finite subgroup of G. The kernel of this homomorphism must be

a free group, by the Subgroup Theorem, which completes the proof of

Theorem 7. 3.

Lemma 7.4. If G=A *c B or A *o with A, B and C f{inite,

then G has a free subgroup of finite index.

Proof. We construct a homomorphism from G to a finite group
which injects A and B. The kernel must be free, by the Subgroup

Theorem.

Case G=A ife B
Let X=A/C XC X B/C, where A/C denotes the set of all cosets
aC of C in A, We will represent A and B faithfully as permutation

groups of the finite set X, in such a way that C acts on X in the same
way for each action, There will then be a homomorphism G = S(X), the
group of permutations of X, which injects A and B.

Choose a transversal t:A/C = A, We have a bijection A/C X C=A
sending (o, c¢) to t(a)c. The action of A on itself by right multiplication
gives an action of A on A/C X C, by using this bijection. We let A act
on X by defining (a, c, Bla = ((a, c)a, B). If c¢' € C, then
(a, ¢, B)c' = (a, cc', B). Similarly we use a transversal of C in B to
define an action of B on X. For this action also, we have
(a, ¢, B)e' = (a, cc', B) forall c' eC.

Case G=A *o
We have two injections of C into A. We use one of them to identify

C with a subgroup of A. Thus we have a subgroup C of A and an
injective map ¢ : C = A, whose image we denote by C,.

Let X=A, and let A acton X by right multiplication. The two
induced actions of C are each multiples of the right regular representation
so are equivalent. We can write down an equivalence as follows. Choose
transversals T : A/C *A, Tl : A/Cl = A and a bijection ¥ : A/C —>A/Cl
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Then T, T, induce bijections U:A/C X C = A, U, :A/Cl X Cl -A
(as above), and we define 6 to be the composite

-1 U
A—Y s acxc —ﬂﬁ‘i—u\/c1 x 0 —— A,

Then 6O(ac) = 0(a)¢(c). Now we can define a homomorphism r : G = S(X)

by letting r|A be the right regular representation and r(t) = 6.

Remark. These constructions - which do not depend on finiteness
(except to suppose the existence of a bijection y) - give an alternative
proof of the assertion (1. 6, 1,7) that if C =+ A, C = B are injective, so
are A—A *c B, A=A *or

Having discussed the accessibility of groups i. e. the existence of
a factorization, the next question to consider is that of uniqueness of the
factorization. One would like some analogue of Theorem 3. 5 for free
products. The first point is that given any graph I' of groups with
fundamental group G, one can construct a larger graph I, also with
fundamental group G by adding an edge e to I' with only one vertex of
e in T and an isomorphism at the other end of e. This corresponds to
expressing G as G *c C for some subgroup C.

We will say that an edge e in a graph of groups I' is trivial if
the two ends of e are distinct vertices of I' and e has an isomorphism
at one end. If T' has such an edge, we can replace I' by a new graph
I'" obtained from I' by identifying e to a point, such that I'' has the
same fundamental group as I. Hence if we start with a finite graph T,
we can eliminate all the trivial edges. However, this is false for infinite
graphs. For example, let T" be the graph with vertices 1, 2, ... and
edges e joining i to i + 1. We associate an infinite cyclic group Ai
to the vertex i and an infinite cyclic group Bi to the edge e;- The

map Bi -*Ai is an isomorphism and the map Bi —A, is multiplication

by two. The fundamental group of I is the dyadic ralt-;c}nals, but every
edge of T' is trivial.

We will say that a graph of groups with no trivial edges is minimal,
Then any finitely generated accessible group G is the fundamental group
of some minimal graph I', where each edge group is finite and each

vertex group has at most one end. Even with minimal graphs, one still
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cannot expect that the graph I' is unique. For example, if
G= C‘x1 L Gn’ then one can take for I" any tree with n vertices,
and associate Gl, ceey Gn to the vertices and the trivial group to each
edge. The same problem arises for amalgamated free products e.g. when
G=G1 o e *o Gn’ Alsoif G=A *o B *DE with D C C, then
G=E *D A *c B giving two possible graphs for G.

We need the following result.

Lemma 7.5. Let G be the fundamental group of a finite graph T’

of groups, such that each edge group is finite and each vertex group has at

most one end.
(i) I A is a subgroup of G with at most one end, then A lies

in a conjugate of a vertex group of T.

(ii) Let v, v, be vertices of I' with associated groups Gl, Gz'
I A= Gl n Gg, then either there is an edge path in T' from v, to v,

such that each of the associated edge groups contains A or G1 = G2 and

geGl.

Proof. (i) The Subgroup Theorem tells us that A is the fundamen-
tal group of a graph I'' of groups where the associated groups are con-
jugates of subgroups of the groups associated to I'. Our aim is to show
that A must be a vertex group of I'.

The fact that e(A) =1 tells us that each edge of I'' is trivial and
that I'' is a tree. Thus the vertex groups of I'' are partially ordered
by inclusion. Suppose that Al - A2 C ... is an infinite ascending chain
of vertex groups of I". If all the inclusions are strict, then each Ai
equals an edge group of I''. But, as I' is a finite graph, there is an
upper bound on the orders of the edge groups of I''. Hence, one cannot
have an infinite strictly increasing chain of vertex groups of I''. Hence
there is a maximal vertex group. This vertex group must equal A, which
completes the proof of (i).

(ii) The proof of this is the same as the proof of Lemma 3.15.

Now we consider a finitely generated group G and two minimal
graphs I and I'' each with fundamental group G, such that each edge
group is finite and each vertex group has at most one end. Note that T’
and I'" must be finite.
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Lemma 7. 6. (i) There is a bijection between the vertices of T

and TI'" such that corresponding vertex groups are conjugate in G.

(ii) T and I have the same number of edges.

(iii) If I' does not have distinct edges e, { with Ge lying in a
then I" and I'' are isomorphic as graphs and corres-

conjugate of G

f’
ponding vertex or edge groups are conjugate in G.

Remarks. In (iii), the hypothesis implies that no edge group of T
is trivial, unless I' has only one edge.
It seems reasonable to suppose that the analogue of (i) for the edges

of ' and I'' always holds, but we cannot prove it.

Proof. (i) Let A be a vertex group of I, Then e(A) =1. Lemma
7.5 (i) tells us that A lies in a conjugate of a vertex group B of I'. The
same lemma shows that B lies in a conjugate of a vertex group A1 of T.
Hence A lies in a conjugate A% of Al for some g € G. Lemma 7, 5(ii)
tells us that either A = A1 and g € A or there is a path from A to A1
in I for which each edge group contains a conjugate of A. As T is
minimal, the second case can only occur when A = A1 and the path
consists of a single loop. Therefore A = A? and A is conjugate to B,

As the groups associated to distinct vertices of T' cannot be conjugate
(because TI' is minimal), assertion (i) follows.

(ii) Let G denote the quotient of G obtained by killing all the
vertex groups of I'. This quotient is a free group of rank E -V + 1,
where E and V are the number of edges and vertices of I'. Part (i)
tells us we obtain a group isomorphic to G by killing all the vertex groups
of I''. Hence E-V+1=E'-V'+1 As V=V' by (i), we have

E =E' as required.

(iii) Let e be an edge of I' with vertices v, and v, which may

be equal, Let G1 and G2 be the groups associated to v, and v, and
let A be the group associatedto e. Then A = Gl n G% where either
Gl # G2 or G1 = G2 and g ¢ Gl. It follows from Lemma 7.5 (ii), and
from part (i) of this lemma, that A lies in a conjugate of an edge group
B of I". Similarly, B lies in a conjugate of an edge group Al of T,

Our hypothesis on I, in (iii), implies that A = A1 so that A is con-
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jugate to B. Thus for each edge group of I, there is an edge group of
T' conjugate to it in G and distinct edges of I" correspond to distinct
edges of T'. As T and I' have the same number of edges, by part
(ii), we have a bijection between the edges of I' and I,

Suppose that A is an edge group of I' and that A is contained in
a conjugate of a vertex group H of I'. Our condition that A is not con-
tained in a conjugate of any other edge group of I' implies that H is one
of the vertex groups at the end of the edge to which A is associated. The
same holds for I, so that the bijection between the edges of I'" and I
must actually induce an isomorphism of the graphs I' and I,

We turn now to another embedding result proved in [20]. The result
and its proof are similar to those of Theorem 3.17, which told us that
any countable group could be embedded in a 2-generator group. The result
is an essential part of the proof of Theorem 7. 3 for arbitrary cardinality

of the groups involved.

Theorem 7.7. If G is the fundamental group of a countable graph

T" of finite groups, where the vertex groups have bounded order, then

G can be embedded in a group H, which is the fundamental group of a

finite graph of finite groups.

Remarks. The natural homomorphism A x. - 7, obtained by

killing A, has kernel K equal to ... *C A *c A SC ... . This can be
seen most simply by constructing a space X whose fundamental group is
K and observing that Z acts freely on X with quotient a space with
fundamental group A *o The graph TI' corresponding to K is a copy
of the real line with integer points as vertices, and all the vertex groups
are copies of A, all the edge groups are copies of C. Thus Z acts on
T, as a graph of groups. This is an example of how to embed a group
which is the fundamental group of an infinite graph of groups into a group
which is the fundamental group of a finite graph of groups. One needs a

fairly uniform sort of graph I" so that I" admits a group action.

Proof, The aim of our proof is to work in steps so as to make T’
uniform. Since the vertex groups have bounded order we can choose a

group H (for example, a symmetric group) in which they all embed.
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Let G1 be obtained from G by replacing each vertex group of T" by a
copy of H. Note that G C G1‘

Let H1’ ceey Hn be groups, one from each isomorphism class of
subgroups of H. Let fl, cees fN be the distinct embeddings of
H1’ veey Hn in H. Then each edge of 1"l has a pair of fl's associated
to it. We will say that two edges of 1"l are of the same type if they

have the same unordered pair associated.

We enlarge the graph of groups I‘1 by adding countably many edges
of each type joining each distinct pair of vertices of 1"1. This new graph
1“2 is still countable, and so is its fundamental group Gz' We have
Gl C G2. Choose a maximal tree T in 1"2 consisting of edges with the
identity map of H at each end. Let 1“3 be the graph of groups obtained
from Fz by identifying T to a point. Thus 1“3 has one vertex labelled
H and countably many loops of each type. Its fundamental group is still
Gz'

We now have a graph which clearly admits a group action. Suppose
that l"3 has m types of loop. We label the edges of 1"3 by ai]., where
1 =i =m, and for fixed i, the suffix j runs through all the integers, thus
enumerating all the loops of one given type.

G2 has a presentation of the form

-1
{H, {aij} laij b, 2.

i = Copo where k runs through some set Ki

and bik’ i €eHJ.
We define an isomorphism ¢ : G2 - G2 by ¢(h) =h, for h eH

and ¢(aij) =a, This determines an extension of G2 by Z which

,j+1e
we call GB. G3 can be presented as

J,t|t'ht=h for h cH, a b a =c.

{H, {a io "ik io ik

10 for k €K, 1
Hence G3 is the fundamental group of a graph of groups which has one
vertex labelled H, one loop of each type and one extra loop which has
associated to it the identity map of H at each end. Hence G3 is the

required group H,.
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8. ENDS OF PAIRS OF GROUPS

The concept of the number of ends of a pair of groups (G, C),
where C is a subgroup of G, is a generalization of the number of ends
of a group. Recall (Section 6) the close relationship between the theory
of ends of groups and the Sphere Theorem. One is also interested in
conditions which will guarantee the existence of other surfaces in a 3-
manifold - particularly when the fundamental group of the surface injects
into the fundamental group of the 3-manifold. Thus one is interested in
groups which split over infinite subgroups. The starting point of my work
on ends of pairs of groups was the idea that there should be a generalization
of Stallings' structure theorem to this situation. Thus one is looking for a
natural definition of a number e(G, C), and one hopes to prove that
e(G, C) =2 if and only if G splits over some subgroup closely related
to C.

The correct definition of e(G, C) is due to Houghton [33]. Recall
the definition of e(G). One lets PG be the power set of G, FG be the
collection of finite subsets of G, each with Boolean addition, and defines
EG = PG/FG. The right action of G on itself induces a right action of
G on EG, Let (EG)Gr denote the subset of elements left fixed by this
action (this is the same as QG/FG, where QG is as in §5). Then e(G)
is the dimension, as Zz—vector space, of (EG)G.

Let C be a subgroup of G andlet H= C\G. Then we define
e(G, C) to be the dimension of (EH)G. Clearly if C is trivial, then
e(G, C) = e(G). The following result justifies the claim that this is the

correct definition of e(G, C).

Lemma 8.1. Let X be a finite CW-complex with a connected

regular covering space X whose covering group is G. If C is a sub-
group of G, then e(G, C) = e(C\X).

Remark. The hypothesis that X is finite implies that G is f.g.

One can summarize the basic properties of e(G, C) as follows.

Lemma 8.2. (i) e(G, C)=0 ifandonly if |G:C| is finite.
(i) If GDG DC, with [G:G | finite, then e(G, C)=e(G,, C).
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(iii) If K is a normal subgroup of G with quotient Gl and
|K:KnC| is finite, then e(G, C) = e(G,, pC), where p:G=G, is

the natural projection.
(ly I C,CCCG and [C:C |=n, then
e(G, C) = e(G, Cl) =n.e(G, C).

These results are all the analogues of results about e(G), except
for (iv). One can give examples showing that either equality can be

achieved in this part. The final basic property of e(G, C) is

Lemma 8.3. If G splits over C, then e(G, C) = 2.

Proof. The proof is very similar to that of Lemma 6. 3. We
consider only the case when G=A *C B. Recall the set E which was
the subset of G consisting of elements whose canonical form starts in
A, If beB, then Eb=E andif a €A, then ECEauCaCE UCUCa.
The subset pE of C\G is left almost invariant by every element of A
or B, and so is almost invariant in C\G., Clearly pE and pE* are
infinite.

This leads us to the first large difference between e(G) and
e(G, C). We know that e(G) can only take the values 0, 1, 2 or
but e(G, C) can take any positive integer value. This is shown by the
following example. Note that both G and C are f.g. in this example.

Example. Let F be a closed surface and let X be a compact sub-
surface so that no component of F - X has closure homeomorphic to a
2-disc, Then the natural map m (X) = wl(F) is injective, and we call the
groups G and C. Now e(G, C) equals the number of ends of FC, the
covering space of F with fundamental group C. But one knows that X

lifts to F. and can prove easily that F_, consists of X together with

half open (a:nnuli S1 x [0, «) attached toceach boundary component of X,
Thus e(G, C) equals the number of boundary components of X. By
choosing F to be of appropriately high genus, one can find pairs (G, C)
for which e(G, C) takes any specified value. )
Originally I hoped to prove that e(G, C) = 2 if and only if G splits

over some subgroup closely related to C. The following example shows
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that no such result can hold.

Example. Let M be a closed, orientable irreducible 3-manifold.
It can be shown that M is sufficiently large if and only if m (M) splits
over some subgroup. There exists such a 3-manifold which is not
sufficiently large, but has a finite covering space which is sufficiently
large. See [8] for a discussion of such examples. Thus we have an
unsplittable group G with a subgroup Gl of finite index which splits
over some subgroup C. Hence e(G, C) = e(Gl, C)=2, but G is un-
splittable. (One can find a subgroup C which is finitely generated, so
there is nothing pathological about this example. )

This example suggests that one must be content to prove that
e(G, C) = 2 if and only if G has a subgroup G, of finite index such
that G1 splits over some subgroup closely related to C. It then seems
reasonable that one will need a residual finiteness condition on G,

We say that a group G is residually finite if given g € G, there
is G1 C G, such that ]G : Gll is finite and g ¢ G1' If C is asub-
group of G, we say that G is C-residually finite if given g e G- C
there is G, © G such that |G :G | is finite, G, OC and g ¢G,. The

natural result seems to be the following, which is proved in [21].

Theorem 8.4. If G and C aref.g. groups and G is C-residually
finite, then e(G, C)= 2 if and only if G has a subgroup G, of finite

index such that G1 contains C and splits over C.

The residual finiteness condition cannot be omitted.

Example. Let G=A xC, where A and C are infinite, simple,
f.g. groups. Thus G has no subgroups of finite index and C has no
subgroups or supergroups of finite index. Now for any non-trivial free
product A x C except for Zz * Zz’ it is easy to show that e(G, C) = =,
But if G had a subgroup G1 of finite index which split over some sub-
group C1 closely related to C one would be forced to have G = G1
and Cl = C. The example is completed by showing that G cannot split

over C.
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Lemma 8.5, Let G=A xC, where A is indecomposable and

not infinite cyclic. Then G cannot split over C.

Proof. Suppose G=X *c Y or X *or As no conjugate of A
meets C, we see from the Subgroup Theorem that A lies in a conjugate
of X or Y. We can suppose X is involved. Use (A) to denote the
normal closure of A in a group containing A. We know that GAA) = C.
Hence we have the equations C = XAA) *o Y or C =XAA) *oe The
second equation is impossible, and the first equation can only hold when
XAA) =C =Y. Butthe equation C =Y contradicts the hypothesis that

G splits over C.
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6 - An example of a finitely presented solvable group

HERBERT ABELS
Universitit Bielefeld
§1. Introduction

Let R = Z[%] be the ring of rationals with denominator a power

of p, p aprime. Let G be the group of matrices of the form

* ok %
EE
1

with entries in R and (positive) units in the diagonal. The purpose of
this note is to prove the elementary fact that G is finitely presented.

The point is that the centre Z(G) of G is not finitely generated,
since isomorphic to R. So this example gives a negative answer to the
following question of P. Hall [5]: Does every solvable finitely presented
group satisfy the maximal condition for normal subgroups ? Equivalently:
Is every homomorphic image of a finitely presented solvable group itself
finitely presented? There has been a failed attempt to give a counter-
example ([7], s. [9]). R. Bieriand R. Strebel have recently announced
results [4] implying that there cannot be a counterexample which is an
extension of a class 2 nilpotent group by an abelian group. Since our
example is class 3 nilpotent by abelian, it is simplest possible in this
respect. In [1] Problem 7. 2(i) it is asked whether every finitely presented
(not necessarily solvable) group has a finitely generated centre. A
counterexample (not solvable) was given in [8].

The constructions P. Hall makes with his group H of [6, p. 349]
can be imitated with our G, notably G mod a cyclic subgroup of Z(G)
is finitely presented solvable not Hopfian and not residually finite. In [2]
Baumslag failed to give an example of a finitely presented solvable group

which is not residually finite.
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G is not constructable, since every homomorphic image of a con-
structable solvable group is finitely presented [3]. But G has a presen-
tation similar to that of an HNN-extension: referring to our list of
generators and relations for G below, one can prove that (elz, e23,
€, relations involving them) is a presentation of N(Z), the sub-
group of matrices with integar eantries and 1's on the diagonal. The
remaining generators - i.e. dz’ d3 - and relations define something
like an HNN-extension except with Z ® Z instead of Z.

I thank R. Bieri and R. Strebel for informing me about the existing
literature and problems. I hope to be able to incorporate this example
into a theory of finite resp. compact presentation of arithmetic and

algebraic groups.

§2, Proof

Let us say an automorphism « of a group B contracts B into a
subgroup C of B if:
(1) e«(C)cC and

2 u o C)=B.
nezZ
For every finite subset S of B we have «

n € N.

n(S) C C for almost every

Lemma. Let A =7 X B be a split extension of B with Z.

Suppose the automorphism « of B corresponding to a generator of Z

contracts B into a finitely presented subgroup C of B, Then A is

finitely presented.

In fact, if (xl, ey XST rm> is a presentation of C,

1
17 0 n’ t;

express oz(xi) as a word w; in x .» X.. Then (xl, vee, X
-1 -1, .
co tx W ) is a presentation of A. So

-1
10 1
A= C*a is an HNN-extension.

-1
r <y T txlt w

We now give a set of generators and defining relations for our group

G. The generators are d2, d , €

30 €17 &g e34'
For the relations we use the notations

-1 -1
x, y)=x "y xy

x :y_lxy
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A (@@
(B1) (e

2’ dz) =1

2? e34)=1 '

1
For the following relations let us define

-1

e, = (e, e,,)

e;clm = (e, €,,) -
(B2) (e13’ elz):l
(B3) (e13, e23) =1
(B4) (e24, e23)=1
(B5) (e“, e”) =1
(B6) (e”, e24) =1
(C12.2) dle d =eb
(€12.3) (e, d) =1
(C23.2) dye d’ =e
(C23.3) dje d =e
(€382 (e, d) =1
(C34.3) de, d =e

I claim that this set of 5 generators and 13 relations is a presentat
of G. Let H be the group with the above presentation. We have a hom
morphism H — G defined by
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ete.
The above presentation of H contains presentations of certain sub-
127 €340 (A), (B1) and the first

and last two of the C-relations) is a presentation of the subgroup Gl of

groups of G. Specifically: <d2’ d,e

matrices of the form

1 *
%
’ * X
1 )

similarly (d e,,; the relations involving them) for

(-

—

’

similarly (d d, e, e,; therelations involving them) for
1
G * % %
3 *

Our claim for Gl follows directly from the lemma applied to the two

blocks. For G2 and G3 first apply the lemma to

1 ® x
1 *eR, @ eZ

’

A =

1 *
with B the subgroup with 1's in the diagonal and C the subgroup of B
with integer entries. Then apply the lemma again for

1 *x

A= * %
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with B the subgroup with 1 as second entry on the diagonal and C = Al.
Now we have inverse homomorphisms Gi =-+H,i=1, 2, 3. In

particular we have in H the relations:

(C13.2) (e, d)=1
-1 p from G2
(C 13.3) d3 e 3d3 =e.,
-1 p
(C 24.2) de.d =e¢e
224 2 24 from G3
(C24.3) (e, d)=1

As a consequence we have an inverse homomorphism G4 - H,

1 *
* % £
G4 %
1
since G4 = <d2’ d}, €150 €5 €,,5 the relations involving them including

C 13. 2 through C 24.3). The proof is as above for G, and G,. The
proof implies that Gl, ceoy Gq are constructable. So are all their inter-
sections GO.

For every pair (i, j), 1=1<j=4, (i, j) # (1, 4), we have a homo-

morphism into one of Gl, ceey Gq, Gk say:

R~ G, ~H,

r14+4r.E..
1]

where Eij is the matrix with (m, n)-entry equal aim . ajn‘ The image
of r in H does not depend on k. We call it .e;‘j. Now all relations (A)
through (C 24. 3) occur in one or several of the groups Gk’ so all of them

hold for e’. instead of e..; i.e,
1] 1)

r ]

(B1) (912, e”) =1
r s ,_ -rs
(e12’ e23) =€,

only depends on r.s,

n
€12.2) d %" d"=eP T,
2 12 2 12
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ete.
We now make use of the following formula of P. Hall:

&, , z). ¢, (z %). 5, x y)=1 (*)

S

t .
a3 2= €5, We obtain:

Computing for x = efz, y=e

rs t,_ ,r st
(elB’ 34)_( 12? 24)
which implies:

s
13’

u \%
, €
12 24

which we define as eff1 € H.

(e egq):(e ) if set=u-v

The next step is to see that efq is central in G:

. r r . R . ] t
Since e. €<e e it commutes wi .
L4 ( Ly’ 24> with d_, e’ and e,

. r r . . s t
Since e, e€fe ., e ) it commutes with d_, e°_ and e .
14 137 34 27 T12 24

" . _.r _ _ . ... _
Now (*) with x €,V z=e_ implies: (e14, e )=1,

€ b
34 23

which proves our claim.
We now conclude that H = G is an isomorphism since both groups

are solvable and have isomorphic factors of their derived series.

Note added in proof

Bieri [A connexion between the integral homology and the centre of
a rational linear group; preprint] has shown that G is not of type
(FP) 5
solvable groups with centre of infinite rank. He also pointed out that
o 8= {x, x+1}, isa
finitely presented solvable group having a centre of infinite rank (oral

Remeslennikov has given examples of finitely presented non

our group of matrices with entries in R = Z[x]

communication).
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7 - SL; (F4[t]) is not finitely presentable

HELMUT BEHR

Universitit Frankfurt am Main

Let K be a function field in one variable over a finite field of
constants, denote by S a finite non-empty set of primes of K and by
Os the ring of S-integers in K, and suppose that G is a Chevalley group.
We are interested in the question, whether the group T = Q(OS) is finitely
generated or finitely presented. It is known since many years that in the
'simplest' case, the group T = SLZ(IFq[t]) is not finitely generated (cf.
[7], IL. 1. 6), and that in all other cases, that means if rank G =2 or
lsf = 2, the group I is finitely generated (cf. [1], which treats also
the non-split case). The problem of finite presentability could be attacked
only some years ago and there are now the following results:

(a) If I'= SLz(OS)’ U. Stuhler showed that T is finitely presen-
ted if |S| = 3 and is not finitely presentable if |S| =2 ([9]).

() If |s| =1, U. Rehmann and C. Soulé proved that GLn(OS)
is finitely presented for n = 4 and that for a simple Chevalley group §
of rank § = 3 the group T = Q(JFq[t]) is also finitely presented ([6]).

(c) If OS =]Fq[t, t'l], J. Hurrelbrink showed that I" is finitely
presented for a simple Chevalley group § of rank G = 2 - with the
possible exception of the type G2 ([an.

So a reasonable conjecture for simple groups would be that I' is
finitely presented if and only if rank § + |S| = 4 (and it is true that T
is finitely generated iff rank G + |S| = 3).

So in particular one needs a 'negative' result for |S| =1 and

rank § = 2, this is proved here for special rings.

Theorem. If G is a Chevalley group of rank 2, then T = Q(Fq[t])
is not finitely presentable, if we assume for type B2 and G2 that
2
-1) £ F°,
(-1) £ a
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The idea of the proof is very much the same as in Stuhler's paper;
especially one has to use the operation of I' on the corresponding
Bruhat-Tits-building (all necessary results on such buildings can be found
in [3]).

1. Let F q(t) be the rational function field in one variable t
over the finite field ]F‘q and v the discrete valuation of ]Fq(t), which
corresponds to the infinite point, that means v(g) :=degq- degp for
p, q €F [t].

Denote by k the completion of F (t) with respect to v, by o its
valuation rmg with prime ideal p and choose t as prime element, such
that k = Fq((f))’ the field of formal series in %

Now consider a Chevalley group G of rank 2 (given as a scheme
over Z). We may assume for our problem that § is simple and simply
connected: If § is not simply connected, then there exists a covering
§ A G, where § is simply connected, ¢ has finite kernel and ¢(§((‘)S))
has finite index in 9(®s) (for an arbitrary ring Os of integers, cf. [2],
Satz 1). If G is simply connected of rank 2, but not simple, it would be
SL_ » SL , and SLZ(]Fq[t]) is not even finitely generated.

Let 7 denote a maximal split torus of G and ¢ the root system
of G with respect to 7, such that & is of type A2 or B2 or Gz' For
each root ¢ € & there exists an isomorphism X, from the additive group
onto a one-dimensional root group ‘uc and an epimorphism Cc from SL2
onto the subgroup of G, generated by ‘uc and ‘U._c (for these facts and

the following ones see [3], 6.1.3b or [5]). Define U:= II U,; U is the
ced

unipotent radical of the Borel subgroup ® =7 X U and W:= I U
' ced”

is the opposite group of U We set G = §(k) and it is well known ([5]),
that G is a group with a BN-pair, where the group B is given as
U(P)T(0*)UWo) (o* is the group of units in o).

If we denote now for each of our three types a fundamental system

of roots by {a, b} and the highest root by a, and define

R ) RESEIA (G AR (9 8

then the affine Weyl group W of the BN-pair is generated by W Wy and
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w _, the linear Weyl group W 0 by Wa and Wi We have three maximal
parahoric subgroups Pi (i=0, 1, 2), where P0 = BWOB = G(o), P
is generated by B, a and W, and P2 is generated by B, Wy, and W

2. We will now look at the group I': = g(qu[t]), which is a dis-
crete subgroup of G. In the rank 2-case (G is simple!) it is known that
T is finitely generated, but we have to be more precise and will show
that in case A2 and Bz’ I" is generated by FO ] (1“1 n 1“2) with
r.=InP, for i=0, 1, 2, whereas in case G_, I' is generated by

i i 1 27
1"0 U 1“3 with 1“3: =TIn P3 and PB: =W0P0W0 .
This can easily be done by the help of Chevalley's commutator

formula:

[x,(u), xW]= T © Py,

pct+aqd
where ¢, d € ®, but d#-¢c, p, q €N, pc+qded, C

X
petad “Tc,d;p,q

¢, dip,q €
u, v €k,

Starting with elements xc(tr) and x d(ts) with small positive ex-
ponents r and s, this formula provides us with elements xe(tn) with
a higher exponent n (e € ®), and - iterating this process - we get finally
elements with arbitrary high powers of t.

We have to use the following facts:

(i) I' is generated by its subgroups 1"c: = ‘ILC(IFq[t]) (c € @),
because F [t] is euclidean,

(ii) ‘U.c(qu) and W0 are contained in FO =T ng()= S(IFq).

(iii) 1"l and 1"2 contain the element X (t).
0
Because the groups <uc are conjugate under W0 for all c of the

same root length, it is enough to construct for each n € N an element
xc(tu) only for one representative ¢ of each root length (we neglect the
constant factors). Let us examine the three cases. For type A2 there
exists only one root length, furthermore 1"l and 1“2 contain the element

Xa+b(t) and we have

[x, @), x, )] =x (%)

In the case B2 we have the short positive roots a and a + b whereas
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b and 2a + b are the long ones; the highest root is 2a + b. The formula
n n,-1 n, . n
[xa(l), xb(t )] X2a+b(t )y T = Xa+bl(_lt ) gives us the element Xa+b(t ), when
X (t") and therefore also xb(t ) are already available, finally - start-
e with n=0 - [x_(t), x (t o g t"?) gives the
gEw - Al *p ) Xa+b =%a+b gives
higher exponents,

In the case G2 there exist three short positive roots, namely a,
a+b, 2a+b and three long positive roots b, 3a+b, 3a+ 2b, the highest
root is 3a+ 2b, moreover the long roots form a system of type Az‘

1“32 contains the elements x_ +b(1:), Xon +b(t)’ xb(t), X30 +b(t) (and
X3a+2b(t )) - to see this, look for instance at Figure 3. As in the case
A2 we obtain xb(tn) with arbitrary n, using only the long roots. Then

we have the formula

3r+s

2r+s t

t3r+2s,)

[x, (), % 09 ]=x, € Oy, T 0T

which yields x (") by iteration, starting with r =1, s = 0.

2a+b
3. In order to examine the question of finite presentability of T’
we now look at the Bruhat-Tits-building ¢, which can be assigned to the
BN-pair of the group G mentioned above (for the details of § see [3]).
As a fundamental chamber we use the 2-simplex C with vertices P
(i=0,1, 2), suchthat §=G. C o’ where G operates on § from the
left by inner automorphisms: P—+g P g for each parahoric group P.
The standard apartment A =W . C is a real plane in our three cases,
the standard quarter Q is defined as {x eAlc(x =0 forall c ¢ tI> ]
(where the roots ¢ are considered as elements of V*, V the underlying
vector space of A), As a subgroup of G, I' operates alsoon § and Q
is a simplicial fundamental domain for the action of T’ on J as was
shown by Soulé ([8], thm. 1). For each n ¢ N we define now
Q(n): = {x € Qfao(x) =n}, where a is the highest root of & and set

g(n); =T, Q(n); sowehave = U 5
neN
We denote by E the system of generators which we described in 2

for the different cases and consider now relations in E. Since 1"i stabi-
lizes the vertex Pi’ we can adjoin with each word ee, ... e, (ei eE)
an edge-path in §, which is given by the following sequence of edges:
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PP, el(POP), elez(PoP), ceey €0 Ll er(PoP), where P is the
vertex P1 or P2 in case A2 or B2 and P = P3 in case G2 (here
the 'edge’ PoP3 is the union of two edges of g, cf. Figure 3). We
should remark that in the first two cases the path with P = P1 is homo-
topic to that with P = Pz' By this construction relations correspond to
closed edge-paths which start and end in Po' All these edge-paths are
contained in T . C0 CcT. Ql = J(1) in the cases A2 and B2 and in
g(2) in case Gz'

We now proceed in the same manner as Stuhler did in the case of
SLz(OS) for |S| =2 (see [9]). Assume that T' can be defined by a finite
number of relations LIPIEY rq (viewed as words in E). Since J is
contractible, the corresponding paths Tl eens rp can be contracted to
P0 ; in any such contraction of a path r, only finitely many simplices are
involved. So there exists a number N such that each of the paths r,
can be contracted in g(N). By our assumption this is true for each path
r that comes from an arbitrary relation r: r is the product of conjugates
of the relations r by elements of I', to fix the ideas assume that

r=g.r,. .gr. g ' with g oo By €T

g . A S
11" 2°1,%2 T igq q

Write the element gj as aword in E and denote the corresponding path
from P  to gj(Po) by gj, the inverse path by gjfl, then the path adjoined

with r is
- = —-1 — —1
r=(g °cg (r;)eg )e...o(@ g, r.)eg )
1 171 1 q q 1q q
Fach ;i is contractible in J(N), and because J(N) is I'-invariant, the

same is ]true for gj(Fi_) and therefore for the whole path r. If we want to
prove that I" cannot e finitely presented, we have to show that for every
natural number n there is a relation r whose corresponding path is not
contractible in g(n).

So we are left to construct such relations in each of our three cases.

Case AZ: G= SL3(k).

Let us begin with the commutator formula

1 -1 tm-l)

%, ) = [y, 1 77D = fwpx, o COwy, w0 )



in the last term we can substitute the analogous expression for

Xa+b(tm-1) and the inverse one for xa_Ha(tm'l)_l and get by iteration
x . (t™) as a product p. of elements w wil X (t):tl eE. To
a+b 1 a’ "b’ Tatb :

p, we can assign a path 131 which starts in P0 with edge P0P1 and

ends in xa+b(tm)P0. Symmetric to this procedure we also have

%, () = 5,0, x (7] =[x Cows ", wetx, @)

and we get by iteration xa+b(tm) as a product P, of elements in E, and we

wb]

can adjoin with p, the path 52, which starts in P with edge P P_ and
ends also in xa+b(tm)P0.

rm = plp;1 equals 1 in G and is therefore a relation in E with
associated path ;m = 51 ° 5;1 (up to homotopy it doesn't matter that we
used for the first half the images of the edge POPl, for the second one
the images of Popz)'

The transition from p1 to p, was given by the substitutions
(u) > X er(u) which define an automorphism o

-1
a’ Tatb
of SLB(k) (it is the diagram-automorphism followed by the inner auto-

w Pw,w Pw
a b’ b

morphism with (1-1_1)).

o induces a simplicial automorphism o of the Bruhat-Tits-building;
the restriction of ¢ to the standard apartment A is the symmetry with
respect to the line g through P0 and the centre of the edge Ple,

(cf. Figure 1).
A
Fig. 1 > Type A,

N
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We will now prove that ;m is not contractible in J(n) for an even
m with m > n. For this purpose we consider for I € N the triangle

Z_  given by

Al in A which has the vertices XZ’ YZ’ !

a(Y;) = a(z;) = b(X;) :b(ZZ) =1, a(XZ) = b(YZ) =17-1,

which implies aO(Zl) =2, ao(XZ) = ao(Yl) =2l - 1, in particular ZZ
is on the line g, Xz and YZ are symmetric with respect to g.

We delete the interior of AZ and define Sl: = S\OAZ, so 3l C 9(n)
if n=2l - 1. Since J is contractible along geodesic lines ([3], 2. 5),
there is a contraction of J to each point of g, we use for this point the

l i

the retraction from J to Sl’

If we can show that p(PO) = Ml’

_ — m A

and p(Rm) = Z,, where Rm = Xa+b(t )Po’ then we see that p(ﬁl) is a

L
path in 24, from M, to Z, andalso p(ﬁz) is a path in 94, from

barycentre S, of A, and denote by p : 52 - aAl the map induced by

where MZ is the centre of XZYZ

Ml to ZZ’ but symmetric to p(ﬁl) with respect to g. Therefore

p(r ) =pl, °p,
from this it follows that ;m is not contractible in Sl’ which is contained
in g(n) for n=27 - 1.

So we have to compute p(PO) and p(Rm) and that means we have to

1) is a closed path in aAl and not homotopic to zero,

determine the geodesic lines between P0 and Sl and between Rm and

SZ' This first problem is trivial because P0 and SZ are contained in
A, their geodesic is a segment of g and thus we have p(PO) = Ml' In
the second case we assert that the geodesic between PO and Rrﬁ con-

tains the segment Slzl of g, if we choose m = 2. To prove this we

construct a minimal gallery between PO and Rm using the Bruhat

decomposition of x (t™), for convenience we choose m even:

a+b
1 ™ 1 t™\ /1
xa+b(tm) = 1 = p ! 1 1
1 t 1/ \-t™™ e |
1 t
Here b:= 1 is in B, we define d: = 1 and have
| !
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-1

m, ., .m
X +b(t y=b.d . LA b=Db(dw atb” +b) . (dwa+bwa+b) dwa+b' b
-1 ym-1
=b (WOWEH-b) 0b
-1 1
We observe that w +bW0 b. WoWaib = | m-2 1 , thus with the
1 1 t 1
definition bO: = 1 and m = 2/, m even, we obtain the formula
1
x (=@ Wt ) Ywbw !l (w o )m_l_1 w b (*)
atb 0" "ath 00 a+b atb o °
It is easy to see that w lw ! “lwt wow tw ! isa
is easy WOW Wy W, WW W W W W W W W

reduced decomposition of a word w in W, if one looks at the reflections
in A, defined by these elements. With the sections of this product we
define a sequence of chambers in A, namely Co’ Woco’ WOWaCO’ ., wC
and this is a minimal gallery in A between C0 and WCO. By all these

0

partial products of w the point P is mapped on a point of the line g,

1 -1 _ R
a+b) WOC0 =4, and the geodesic line between

P0 and wP0 is contamed in g.

especially we have (w \ 4

From this minimal gallery between C0 and wCO, we obtain a
minimal gallery between C0 and Xa+b(tm)c0’ if we multiply it with b
from the left side, because xa+b(tm) =bwb and bC0 = CO, since the

stabilizer of C0 is B. The formula (*) implies that b operates trivially
1 \l-1

a+b)

1s also part of the geodesic

on the part of the gallery between' C and (w w C 0 in particular
the line segment of g between P0 and ZZ
line between P and x_ +b(tm)P , =R andthus §,Z, is contained in
this geodesic line. From this we conclude finally that p(Rm) = ZZ' Thus
for a given n ¢ N we can take for the wanted relation r, which is not
contractible in J(n), the relation T for m=n+1 or m=n+2m
even,
Case BZ: G= Sp4(k).

We start with the commutator formula
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%™ = [, 0, x (7 AL x, ) 7

and write the factors on the right side as products of elements in E and

BEL L .
X2a+b(t) with j < m:

-1

m, m-1
Xoa bt I=WpXg 0w WoXon 1y )1

e S SN x,

-1 -1 m-2, -1
- [be2a+b(t)[wax2a+b(-t)wa ’ Xa(l)]wb ’ Wax2a+b(_t )Wa )

2a+b

m-1y

w m-l) -1

(t a’

(-t x (1]

: X23.+b aX2a+b

. m-1 m-2
In the last term we can substitute for X2a+b(it ) andmx2a+b(:tt )
the analogous expression and obtain by iteration Xoa +b(t ) as a product
P, of elements in E,
To get from this product a 'symmetric' relation, we apply the inner

automorphism o with w., so we have:

b’

m, O m g -1 o o
X23.+b(t )'-’XZaan(t )y Va ™ Vatp ¥p~ Xa(l) Hxa+b(-1)'

If we define p_: = o(pl), then r := pl.p;1 is a relation in E, and
again we associate with r, an edge-path r in g, which starts in P0
with the edge Popz'

0 induces a simplicial automorphism o of g, which fixes the
line g through P0 and P2 and whose restriction to A is the symmetry
with respect to g.

Type B,
Fig. 2
? g.
Q\\/ \\0

P a0=0

Q\\z 0 .

a =

P2 P1 0
a =2

AN |

X aO:ZZ

f L Q a0:21+1

b=0 b=1 b=2 221



This time we have to delete a segment XZYZ of g (for some
l € N), which is an image of Popz’ and of course also the interior of all
triangles that have XZYZ as an edge. Denote by Ml the centre of XZYZ’
by Ll the link of MZ in g, consisting of a bunch of broken line-segments
which connect X; and Y,, by st(Ml) the open star of M,, and define
JZ: = 5\st(Ml). We consider once more the contraction of J to the

point Ml and the map p : ‘jl = L. induced by this contraction. It is

L
obvious that p(Po) = Xl and a similar computation as for case A2
shows that p(R_)=7Y, with R_:

m l m

(depending on 1).

= X2a+b(tm)Po for m big enough
It remains to prove, that p(?m) is not homotopic to zero in Ll -
and therefore ;m cannot be contractible in 51’ which contains J(n)
for small n (relative to 7). Due to the symmetry of T it suffices to
show that none of the broken line-segments between Xl and Yl is in-
variant under o. Such a segment includes two edges, say XlZl and
Yl’

ZZYZ' Denote by d an element in G, which maps P0P2 onto X

we can choose d € 7(k), such that wbd = dwb. Then we have

Z, = dPd ™', where P P P isa 2-simplex of . That Z, is invariant

A

under ¢ means that Wy, normalizes the parahoric group ZZ; since
parahoric groups are identical with their normalizers, this implies that

Y is contained in Zl’ and with regard to wbd = dwb, even that wy, € P.

Thus the whole 2-simplex is fixed under Wy and an easy computation

shows that this is possible if and only if (-1) € Fé
Case G_.
2

In this case E contains the elements xb(t) and X (t) and we

3a+b
have the formula

-1

)= D0 Wy W]

X op(tT) = (K0, Xap (¢

which can be iterated and gives finally X3a+2b(tm) as a product p, of
£1 1

sap® 0 W, -

We obtain a second product P, by applying the inner automorphism

factors xb(t)il, X

o with the element W which leaves x (tm) invariant (and also the

3a+2b
system E of generators).
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Thus we have a relation rL = p.. p;1 and a corresponding path
fm, starting with P0P3 which is symmetric with respect to the auto-

morphism o of J induced by o.

Fig. 3
Type G
6\\( 6\\@ 6\\, P a=1 a=2 ype &,
X % a =0
0
=1
Pl P2 a'0
P3 a :2
0
—A
g
X
L a =21-1
Q 0
¥ % a0=21
Y,

The choice of the map p is the same as in case B2: Take an image
XZYZ of POP1 on the axis g, denote by M1 the centre of XZYZ’ con-
sider the retraction of J to MZ and the induced map p : 5Z nd Ll’ where
SZ D= g]\st(Ml) and LZ is the link of MZ

as in case B2 apply and it follows that ?m is not homotopic to zero

in J. The same arguments
in gl or in g(n) for a suitable n.
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8 - Two-dimensional Poincaré duality groups and pairs

ROBERT BIERI and BENO ECKMANN
Universitit Freiburg im .Brg., and ETH Zirich

1. Poincaré duality groups

A Poincaré duality group of dimension n in the sense of [1] (in
short a PDn—group) is a group G, acting on the infinite cyclic group Z,

such that one has natural isomorphisms
HYG; A)=H . (G; Z®A)
’ n-k\

for all integers k and all G-modules A, (Z ® A = tensor product over Z
with diagonal G-action). These Poincaré duality groups coincide [2] with
those considered by Johnson-Wall [6], except that in general we do not
assume finite presentation,

The only PDO—group is the trivial group 1, and the only PD1 -group
is infinite cyclic. Closed surfaces of genus = 1 being aspherical their
fundamental groups, the 'surface groups’', are PDZ; we call them
geometric PDz—groups. As no other examples are available it has been
conjectured that all PDZ—groups are geometric. PDZ-groups G have
in fact many properties in common with surface groups: All subgroups
of infinite index in G are free (Strebel [8]); if G is not perfect then it
is residually nilpotent (Dyer-Vasquez [5]). J. Cohen [4] has verified the
conjecture under the assumption that G admits a finite free resolution

and that G/G' can be generated by 2 elements.

2.  Poincaré duality pairs

The geometric analogy suggests studying PDn—groups by trying to
break them into smaller pieces and investigating 'PDn-groups with
boundary'. For the group-theoretic definition of these objects one needs

relative (co)homology groups for pairs (G, S§). Sucha pair consists of
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a group G and a family of subgroups S = {Si =G/} # ¢ We take the
theory considered, e.g., by Trotter [9]: The free Abelian group

ZG/S = @ZG/S over all cosets xS is a G-module and has an obvious
'augmentatlon map € : ZG/S*Z; let A be the kernel of & Then one
puts, for any G-module A and k € Z,

HYG, §;A) = Extg (8, A), H (G, S;A)=Torg (4, A),

Now a Poincaré duality pair of dimension n (in short a PDn-pair)
is a pair (G, 8), S # ¢, together with a G-action on Z, such that one has

natural isomorphisms

() HG;A)=H_ (G, S Z®A)
and

- k ~

(i) H(G, S;A)=H_,(G;Z®A),

for all k and A. One can show that the two conditions (i) and (ii) imply
each other, and imply that S is a finite family of PDn'l-groups. More-

over, using results of [2] one obtains the following simple criterion,

PD"-Criterion. (G, 8) isa PDn-pair if and only if (a) the G-
module A admits a finite projective resolution and (b) Hk(G, S; ZG) =10
for k+#n, =7 for k=n.

3, PDz-pairs

Examples of PDZ—pairs ére, of course, obtained by taking the
fundamental group of a punctured closed surface together with the family
of infinite cyclic subgroups generated by small circles around the points
which have been removed. In this way we obtain the geometric PDZ-pairs

(G, S). Inthe orientable case, G is the free group freely generated by

Xy eens g’ Vs oees yg, t1’ ceey tm-l’ (2= 0, m=1) and
= {{t > . (tm_1>, <t1t2"'tm-1[xl’ yl]...[xg, yg]>}.
In the non-orientable case G is freely generated by ZsZoseees zg,
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t, ..., t

) m-1° (&=1) and

2 2
5= {0, oony Ct 17, <t1t2...tm_1z1...zg>}.

We shall now discuss the question whether all PDz—pairs are in
fact geometric. We first notice that for n =2 the PD"-criterion can be
considerably simplified. If (G, 8) isa PDZ—pair then G is finitely
generated, and of cohomology dimension =1 by (i). Hence G is free of
finite rank, and S is a finite family of infinite cyclic subgroups. This
implies, conversely, that A has a finite projective resolution of length
2. Moreover, a relative version of Stallings' theorem shows that
H%(G, S; ZG) = Z implies H' (G, S; ZG) = 0, so that we obtain the

PD’-Criterion. (G, S) is a PD’-pair if and only if G is a free

group of finite rank k, S a finite family of m infinite cyclic subgroups,
and H’(G, S; ZG) = Z.

From now onlet G=F be free of rank k, and S the finite family

of infinite cyclic subgroups of F generated by LTy eeey T € F res-

pectively.

Theorem 1. If (F, S) isa PD?-pair then there are free genera-

tors Yis Voo eees Vi of F such that r]. is conjugate to yJ. for

1 =j=m-1. Inparticular m-1 =<k,

Proof. First one shows that if S is the disjoint union of two non-
empty families §a’ a=1,2, and (G, §) isa PDn-pair, then
Hn(G, §a; M) =0 for all G-modules M, i.e.,the pairs (G, §a) are of
cohomology dimension = n-1. For this we consider the short exact

sequence of G-modules

Al ® A2 >¢l' A l[_/» Z
where A =ker(ZG/S - 1Z), A, = ker(ZG/§a - Z), ¢ = inclusion, and ¥
is given by z,l/(xSi) =1 or 0 according to whether Si €§l or Si €§2.
If (G, S) isa PDn—pair, then G is a duality group of dimension n-1
with dualizing module Z ® A (cf. [3]); hence one has the commuting

diagram
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Hn-l(G; M) Ll > Hn_l(G; Hom(A, M))

lg

H (G; Z® A®M) ——— H (G; Z® A®Hom(a, M)

The evaluation map induces HO(G; Z® A S Hom(a, M) = HO(G; Z Q M).
It is easy to check that under this isomorphfsm the bottom map coincides
with HO(G; Z ® ¢ ® M) which is surjective. Thus * is surjective, and

from the long exact coefficient sequence we get

® B }(G; Hom(a ,, M)) = @ 5'(G, S_; M) = 0.
[ o

In the case n = 2 the pairs (G, §a) are thus of cohomology dimen-
sion =1. By aresult of C. T. C. Wall [10], there exists a free basis of
G which up to conjugacy contains the generators of the Si € §1. Assuming

m = 2 and taking S, = {Sm} the assertion follows.

4, Applications of Theorem 1

(1) The PD’-pair (F, S) with k=2 and m =3 is geometric.
For one is reduced to the case F =(x, y;-), S= {{x), {y), (r)}. But
Theorem 1 also asserts that x together with a conjugate of r forma
basis of F, hence we may assume r = xay. The same argument applied

to y and xay yields a =1.

(2) Let (F, S) bea PD’-pair with arbitrary k and m =k + 1,
and take PDz-pairs (Fi’ Ti)’ 1 =i =m, corresponding to punctured tori;
ie. F, =, b;-) and T, =([a;, b,]). Then consider the free product

of F with the Fi's amalgamated along r, = [ai, bi]’

H=(F, a b,; riz[ai, bi] (1=i=m)).

i’
One can show ([3], Theorem 8.1) that (F, S) is a PD?-pair if and only if
H isa PDQ-group. Moreover, if (F, 8) is geometric, so is of course H.
But the converse holds! For this one has to show that if H is the funda-
mental group of a closed surface & then there are simple closed curves

on F such that cutting along those realizes geometrically the given
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amalgamated product decomposition. Now by Theorem 1, we can always
arrange that H has a single defining relation; this shows that the

absolute PD2—conjecture for one-relator groups implies the PDZ-

conjecture for all pairs,

5. Further information on a PDZ—pair (F, S) is obtained by considering
the quotient of F modulo the normal subgroup generated by S, i.e. the

group

By Theorem 1 we know already that Q has a presentation with k- m + 1

generators and a single defining relator.

Theorem 2. The minimal number of generators for Q is
dQ)=k- m + 1. Moreover, if d(Q)=1 then Q= Z/2Z and if
d@Q > 1 then Q is a PD’-group.

For the proof we refer to [3]. As an application, we consider the
case m=1. Then d(Q) =k, and Q =(F; §) is itself a one-relator
presentation. If k = 2 then, by Theorem 2, Q isa PDz-group. If Q
is a surface group then, by results of Zieschang and Rosenberger (cf.

[7])) there is a basis of F such that the relator r has the canonical form,
and hence the pair (F; S) is geometric. Using the fact that one-relator
presentations are aspherical together with J, Cohen's result for the case
when d(Q/Q") = 2, we obtain the result that MPDZ—M (F, 8) with
k=2 and m =1 is geometric.
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9 - Metabelian quotients of finitely presented soluble
groups are finitely presented

ROBERT BIERI and RALPH STREBEL
Freiburg University and Heidelberg University

1. The purpose of this note is to announce some progress in the theory
of finitely presented soluble groups. In particular, we solve Gilbert
Baumslag's problem [1], [2] of discerning which finitely generated meta-
belian groups are finitely presented and we prove the result stated in the
title. This gives a positive answer to a weak version of Philip Hall's

old problem [5] whether all homomorphicl images of a finitely presented
soluble group be finitely presented. Moreover, this answer is sharp, for
H. Abels' example (cf. Remark 1) shows that 3-step soluble images need
not be finitely related.

2. Recall that an abelian group Q is orderable if there is a subset
Q' © @ with the following three properties

(i) Q+ is a submonoid of Q,

(i) Q@=Q"uQ, where @ =@,

i) QT nQ =1
If Q is orderable, then every subset Q+ C Q satisfying (i)-(iii) shall be
termed an ordering of Q.

From now on Q@ will denote a free Abelian group of finite rank n,
Then it is well known that Q is orderable. We shall consider Q@-modules

A with the following property:

Definition. We say that A has property (*) if, for every ordering
Q+ of Q, A is finitely generated either as a ZQ+—modu1e or as a ZQ -
module (or both).
It is clear that (*) is inherited by all homomorphic images of A,
One can show that all orderings of Q can be described in terms of flags
of closed half spaces in R" = Q ®Z’]R’ and this description allows one to

verify property (*) in specific situations.
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3, Our main results can now be stated as follows:

Theorem A, Let G be a soluble group containing a normal sub-
group N <I G such that the quotient Q = G/N is free Abelian. If G
is finitely presented then the Q-module N/N' has property (*).

Theorem B. Let Q be a free Abelian group of finite rank and A

a Q-module with property (*). Then every extension of A by Q is

finitely presented.

As finite presentability is not affected when we pass to a subgroup
of finite index the conjunction of Theorems A and B yields a necessary
and sufficient condition for a metabelian group G to be finitely presented.
Somewhat surprisingly this condition does not involve the extension class
[G'> G+ G/G'] € H2(G/G', G'"), so that we have

Corollary 1. A metabelian group G is finitely presented if and only

if the split extension G' X (G/G') is finitely presented.

Another immediate consequence of Theorems A and B is the result
stated in the title:

Corollary 2. If a soluble group G is finitely presented, so is

every metabelian homomorphic image of G.

4, It is well known that the variety N ) U of all nilpotent-of-class-2-by-
Abelian groups contains finitely generated groups which are not residually
finite and have infinitely generated centre. None of these pathologies can

occur in the finitely presented casé:

Corollary 3. If a soluble group G is finitely presented then every

mzll—quotient G of G is residually finite and satisfies max-n, the

maximal condition for normal subgroups.

Proof. G contains a normal subgroup N <I G such that Q = G/N
is Abelian and the centre Z of N contains the commutator subgroup N'.
If G is finitely presented, so is G/Z by Corollary 2, hence Z is
finitely generated as a Q-module and hence Noetherian, This shows that
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G satisfies max-n. In order to prove that G is residually finite pick

1 #x € G, The finitely generated Q-module Z is residually finite,

hence Z contains a subgroup M of finite index which is normal in G
and does not contain x. Replacing G by G/M we are reduced to the
case where Z is finite. Then the centralizer of Z has finite index in

G and we are reduced to the case where G is a finitely presented centre-
by-metabelian group with finitely generated centre. In this situation it
has been shown by J. R. J, Groves [4]that G is Abelian-by-polycyclic
and hence G is residually finite by the result of J. Roseblade [7]and

A, V. Jategaonkar [6].

5. Remarks, (1) H. Abels has pointed out (these proceedings, 205-11)
that the multiplicative group G of all non-singular upper triangular matrice
(aij) of rank 4 over Z[3] with an=1=a44 is finitely presented, and thus
supplied a surprisingly simple counter example to P, Hall's question, In

fact G is in 9}311 and has centre Z=Z[3], so that the quotient G/Z is not
finitely related. Moreover, quotients of G modulo cyclic central sub-

groups are non-Hopfian and hence are not residually finite. This shows

that the statements of Corollaries 2 and 3 are sharp.

(2) A group G is termed almost finitely presented if there is a

short exact sequence R >+ F = G such that F is a free group of finite
rank and R/R' is finitely generated as a G-module or, equivalently, if
the trivial G-module Z admits a projective resolution which is finitely
generated in dimensions 0, 1 and 2. It is plain that every finitely
presented group is almost finitely presented, but whether the converse
holds is still open. As in [3] one can show that Theorem A holds under
the weaker assumption that G be almost finitely presented, whence we

have

Corollary 4. Almost finitely presented metabelian groups are

finitely presented.
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10 - Soluble groups with coherent group rings

ROBERT BIERI and RALPH STREBEL

Freiburg University and Heidelberg University

The objective of this note is to show how the key result of [4] which
describes a structural property common to all (infinite) soluble groups
of type (FP)2 leads to a characterization of the soluble groups with

coherent group ring.

1. Definition. We say that a group G’ is of type (FP)2 over a com-
mutative ring K with 1 # 0, if the trivial KG-module K admits a KG-
projective resolution P =*K which is finitely generated in dimensions
0, 1, and 2; cf. [3], p. 20. A finitely presented group is of type (FP)2
over every K, but little is known about the converse. Nevertheless the
conceivably weaker condition of being of type (FP)2 is often technically
advantageous to work with, an instance of this phenomenon being provided
by the sequel.

The key result of [4] is

Theorem A, Let G be a soluble group and N<I G a normal sub-

group with infinite cyclic factor group G/N, and let t ¢ G generate a

complement of N in G, If G is of type (FP)2 (over some commutative

ring with 1 # 0) then there is a finitely generated subgroup B <N and a
sign € =1 suchthat t"°Bt® =B and that G is the 'ascending' HNN-

group

G =(B, t; t bt = ¢(b) (b € B)),

where ¢: B>—> B is the restriction of conjugation by t.

This result will be used to establish the following
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Proposition. Let G be a finitely generated soluble group with

the property that every finitely generated subgroup is of type (FP)2

over some commutative ring with 1 # 0. Then G is an ascending

HNN-group
G=(P, t;t 'pt=¢@®) (p €P))

over a polycyclic base group P, or G is polycyclic.

2. The proof of this proposition will be divided into several steps.
Recall a group is said to have finite rank (in the sense of Prifer) if there
is a natural number r such that every finitely generated subgroup can be
generated by =r elements (cf. [5], pp. 33-4). Let G be a group satis-

fying the assumptions of the proposition.

Claim. G has finite rank.

The proof goes by induction on the derived length of G starting
at G= {1}. Since G is f.g. (short for: finitely generated) it has a
subgroup H of finite index such that H contains the derived group G'
of G and H/G' is free abelian of finite rank n = 0, Let
{xiG' |1 =i=n} beabasis of H/G' and put N, = gp(G'; X 1) +ees xn),
l1=i=n, By Theorem A H is a. HNN-group over a f, g. base group

B1 = N1 and B1 can be assumed to contain X, X X . By itera-

TRy
tion one obtains in this way a tower of HNN-groups H > B1 > B2 >...> Bn
with Bi = Ni and Bn = G'. By the induction hypothesis Bn has finite
rank. Since performing an ascending HNN-construction increases the rank

by at most 1, we see that H and hence G have indeed finite rank. /

The fact that G is a f. g. soluble group of finite rank pins down the
structure of G considerably: by a result of Mal'cev G contains a nil-
potent normal subgroup N <I G with G/N = Q Abelian-by-finite (see
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e.g. [5], Thm. 3.5, p. 79). Inparticular, V= (N/N') ®Z Q@ is a finite
dimensional vector space actedonby Q. For q €Q let Xq be the
characteristic polynomial of the action on V, let an be the multiplica-
tive group of the positive elements of @ and let A : Q —> an be the group
homomorphism taking q to the absolute value of the determinant of the
automorphism induced by q.

is integral,

-1

Claim. (i) For every q € Q either Xq or x
q

(ii) The image of A : Q= Q:n is cyclic.

Let bl, ceey bn be elements of N whose images in V = (N/N')®ZQ
form a basis, and let g be an element of G-N, Then L = Lg =
gp(bl, e bn’ g) is a finitely generated nilpotent-by-cyclic group which,
being a subgroup of G, is also of type (FP)Z. It follows from Theorem A
(cf. [4], Thm. C)and g or g_l induces an automorphism on Vg =
(gpL (bl, ceey bn))a'b ® @ with integral characteristic polynomial. This

g
implies assertion (i), for the inclusion gpy, (b
g

AR bn)SN induces by

construction an isomorphism V_=V.
Because of (i) A(Q) E N U { l/klk e N}. Since an is free abelian
this implies that A(Q) = an is either trivial or infinite cyclic. /

Claim. If A(Q) = {1} then G is polycyclic.

Pick elements t1’ cees tn € Q = G/N which freely generate a
free Abelian subgroup T of finite index in Q. The characteristic poly-

nomials X; = X; are integral and have both leading and terminal co-
i

efficient *1, hence the ng(ti)-modules A.1= ng(ti)/xi' ng(ti) are f. g.
as Abelian groups (1 =i =n). Let N denote the quotient of N/N'

modulo its torsion-subgroup. As X5 annihilates N every cyclic T-
submodule of N is a homomorphic image of A1 Q A2 ... ® An and
hence f. g. as an Abelian group. Since Q = G/N is finitely presented

N is a f.g. Q-module, and also a f, g, T-module, and this proves that N
is f. g. as Abelian group. On the other hand, ZQ is noetherian and so the
torsion-subgroup of N/N' has bounded exponent and so, having also finite
rank, must be finite. From the fact that N/N' is f, g. a well-known result
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of Baer's permits us to conclude that N is polycyclic (see, e.g. [5], p. 55).
Hence G is likewise polycyclic. /

If A(Q) is infinite cyclic pick an element t N € Q with
AQ) = A(gp(tl. N)). By Theorem A, with ker(G = G/N 4 Q ) resp.
t1 playing the r6le of N resp. t, G is an HNN-group over a f. g. base
group B=G and A(BN/N) = {1}. N is the union of a tower

L<L <L <..<N
t&

of groups LJ. = (N nB) 1. Since L]. and Lj are isomorphic and both

+1
j+1
p. 255). It follows that the inclusion L = (N n B) < N induces an iso-
morphism (L/L')®Q >V = (N/N') ® Q. Thus the base group B< G
satisfies the conditions of the preceding claim with N replaced by L

have finite rank, Lj is of finite index in L (see e.g. [1], Lemma 10,

and Q replaced by B/L, and so G is an ascending HNN-group over a

polycyclic base group, as asserted.

3. Definition. A ring A is termed right coherent if every finitely
generated right ideal is finitely related. Similarly a group is termed
coherent if every finitely generated subgroup is finitely related.

The preceding proposition leads to a characterization of finitely
generated soluble groups having a right (or left) coherent integral group

ring.

Theorem B. For a finitely generated soluble group G the following

statements are equivalent:

(i) The group ring ZG is right coherent.

(ii) G is coherent.
(ii1) G is an ascending HNN-group over a polycyclic base group

or G is itself polycyclic.

Proof. (i)= (iii). It is easy to see that if ZG is right coherent
so is the group ring ZS for every subgroup S=<G. If S isf. g. the
augmentation ideal IS < ZS is f.g., hence S is of type (FP)z’ and the

preceding proposition applies.
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(ii)=> (iii). If (ii) holds the proposition gives (iii), Conversely
it is straightforward to check that every f. g. subgroup G has the same
structure as G. Since every polycyclic group and every ascending HNN-
group with polycyclic base is finitely presented, G is coherent.

(iii)= (i). As the group ring of a polycyclic group is noetherian
and so a fortiori coherent, we can assume G =<(P, t; t_lpt = ¢(p) (p € P))
with P polycyclic. To prove that A = ZG is right coherent it will do to
show that Tor?(HA, M) =0 for every left A-module M and every direct
product ITA of copies of A (see, e.g. [6], p. 43). The Mayer-Vietoris

sequence for HNN-groups [2] yields an exact sequence

B
M=TA ®Z M.

ZP A 0
Tor] (ITA, M) - Tor, (IA, M) = A ®Z p

P

Since ZP is coherent and A is P-flat the left hand term is trivial. To

see that B 1is injective consider the commutative square

B .
A 8, M > TIA ©,, M
lu lu
A®, M e nK ®
(A ©gp M) > DA ©gp M)

where p is given by u(II)\i ®m) = H()\i ®m), m € M and Ai € A. Since

M is the union of f. g. ZP-submodules and ZP is noetherian p is in-

jective, Moreover, each component B': A ®Z M—>AR M is in-
A P ZP

jective, So g itself is injective and Tor, (IA, M)=0. 7/

Postscript, January 1979. J. R. J. Groves, using similar methods, has
also established the equivalence of statements (ii) and (iii) in Theorem B.
His proof appeared in J. Australian Math. Soc. (A) 26 (1978), 115-25,
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11 - Cohomological aspects of 2-graphs. |l

PETER J. CAMERON

Oxford University

This note contains a summary of a lecture given at the Symposium,
together with some additions based on comments by Professor J, -P.

Serre after the lecture. Some of the material appears elsewhere [1],
in a different form.,

Throughout, F denotes the field GF(2). An F-vector space with
given finite basis can be identified with the set of all subsets of the basis;
addition corresponds to symmetric difference. In particular, a (d - 1)-
chain or (d - 1)-cochain on an (n - 1)-simplex is a collection of d-element
subsets of a set X of n elements, A 1-chain or 1-cochain is thus a
graph with vertex set X; 1l-cycles are Eulerian graphs, and 1-cocycles
are complete bipartite graphs. A two-graph is defined to be a 2-cocycle,
that is, a set 7 of triples with the property that any quadruple contains an
even number of members of 7. Since 2-dimensional cohomology vanishes,
7 is the coboundary of a 1-cochain k, that is, the set of triples carrying
an odd number of edges of the graph k. The set of all graphs k giving
rise to 7 in this way is a switching class, a coset of the space C of
1-cocycles (complete bipartite graphs) in the space K of all graphs.

The annihilator of C in K (with respect to the duality between
1-chains and 1-cochains) is the space C* of 1-cycles. Thus C* is the
dual space of K/C. Since this duality is invariant under the symmetric
group on X, the numbers of isomorphism types of two-graphs and Eulerian
graphs on X are equal, This was first proved by Mallows and Sloane by
enumeration [3].

Given a set X of equiangular lines through the origin in Euclidean
space ]Rd, the set of triples of lines having the property that, for some
choice of directions on the lines, all angles are acute, forms a two-graph.
(For example, the diagonals of an icosahedron are an equiangular set. A
triple of diagonals belongs to the two-graph if and only if it contains the

three vertices of some face.) Conversely, any two-graph can be canoni-

241



cally represented in this way.

Much of the interest in two-graphs stems from the fact that many
of the known doubly transitive finite permutation groups are automorphism
groups of two-graphs. Among these are the groups PSLZ(q) for g=1
(mod 4), PSU,(q) for g odd, the Ree groups 2G2(q), Sp, (2), the
Higman-Sims group, and the Conway group - 3. Indeed, it often happens
that the largest number of equiangular lines in a given number of dimen-
sions is associated with an interesting group (for example, 6 in 3 dimen-
sions with the icosahedral group, 28 in 7 dimensions with Sp6(2), 276
in 23 dimensions with - 3).

Let FX denote the vector space with basis X (the space of 0-
cochains), and B the 1-dimensional subspace {¢, X}. Then FX/B

is the space C of 1-coboundaries; so there is an exact sequence
0+B->FX—-+C—+0 (*)

of F-modules, where B = F. (The image of a subset Y of X is the
complete bipartite graph on Y and its complement.) These modules are
FG-modules for any group G of permutations of X,

Let 7 be a two-graph on X, and G a group of automorphisms of
7. There are naturally-defined elements y € H (G, C) and B € HZ(G, B),
arising as follows. The operations of switching (adding elements of C)
and the elements of G generate a group of permutations of the switching
class of 7, which is a split extension CG. The stabilisers of members of
the switching class form a conjugacy class of complements of C, corres-
ponding to the cohomology class 3, (Thus y =0 if and only if G fixes
a graph in the switching class.) Suppose T is represented by a set of
equiangular lines in Euclidean space ]Rd. Then any element of G is
represented by two orthogonal transformations of IRd, one the negative
of the other; so we have an extension G ofa cyclic group of order 2 by
G, corresponding to the cohomology class 8. We have =0 if (%)
splits as sequence of FG-modules. Also, 8 is the image of y under the
connecting homomorphism associated with (*), For the icosahedron, we
have y # 0 (since the icosahedral group is doubly transitive on the set

of diagonals and so leaves no non-trivial graph invariant), but 8= 10

242



(since the full icos\ahedral group is 22 X As)' Mallows and Sloane [3]
showed that y = 0 for any cyclic group G. This was a tool in their
enumeration of two-graphs mentioned earlier,

Now let G be a doubly transitive automorphism group of a non-
trivial two-graph 7. Suppose that g = 0. Then the stabiliser GX of an
element of X (a line) has a subgroup N(x) of index 2 (the stabiliser
of a direction on the line). It is clear geometrically that N(x) n Gy C N(y)
for any x and y; that is, N(x) is strongly closed in Gx' Alternatively,
N(x) is the kernel of a non-zero homomorphism from GX to F, and so
corresponds to an element a e Hl(GX, F). The strong closure condition

asserts that, for any x and y, the restrictions of a and ay to

GX n Gy are equal; call ax strongly closed in this case.

Since G is doubly transitive, ¥ # 0. The exactness of
. »H'(G, FX)»H' (G, C) = H’(G, B)~...

and the vanishing of B ensures that y is the image of a nonzero element
¥ eHl(G, FX). Note that HI(G, FX) and "' (GX, ) are isomorphic
by Shapiro's lemma; 3* and ax correspond under this isomorphism.

Of course, a strongly closed element of Hl(GX, F) could also
arise as the restriction of an element of H1 (G, F). Theorems asserting
that, under certain hypotheses, an element of Hl(GX, F) is sucha

restriction, are transfer theorems., Such a theorem is the following

result [2], [4], the converse of our previous observations,

Theorem. Let G be a finite doubly transitive permutation group

on a set X. Suppose that, for x € X, GX has a strongly closed subgroup
N(x) of index 2. Then either

(i) G has a subgroup N of index 2 with N n GX = N(x);
or (ii) G is an automorphism group of a nontrivial two-graph with

g =0,

A more general result can be proved, in which the condition =10
does not appear. If B # 0, then the distinguished subgroup N(x) of
index 2 in GX no longer exists; in the projection from G onto G, the

stabiliser of a direction is mapped onto Gx' It is tempting to say that
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axz 0 1in this case, but this may not make sense. Note that the restric-
tion of B to GX is always zero.

There are possible generalisations, to infinite sets, non-faithful
group actions, 'oriented two-graphs’, fields other than GF(2), or higher
dimensional cocycles (see [1]). Little is known about most of these.
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12 - Recognizing free factors

M. J. DUNWOODY

University of Sussex
1. Introduction

The augmentation ideal I, of a group G is the kernel of the aug-

mentation map € : ZG > Z whec::‘e e(z ngg) = Eng. If H=G, IHG
denotes the right ideal of ZG generated by IH It was shown by Jacques
Lewip [3]that G=K gL if and only if I =I.G+1 G where
I_KG n ILG = IHG. In particular G =K x L if and only if IG=IKG€BILG
(see also [1, Theorem 4. 7]).

In general it is not true that if I.HG is a direct summand of IG then
H is a free factor of G. In particular if G is finite, then IHG isa
direct summand of IG if and only if G is a Frobenius group with comple-
ment H [4, p. 59]. However D, E. Cohen [1] (following the work of
Swan [6]) showed that if G is a finitely generated torsion free group and
IHG is a direct summand of IG, then H is a free factor of G. In this
paper, partial results are obtained for the case when it is only assumed
that H is torsion free. In[2] I showedthat H is a free factor of G if
IG/IHG is a finitely generated projective ZG-module.

As in [2] a pair (G, H) is defined to be a group G and a subgroup
H of G. The pair (G, H) is said to be finitely generated if G is genera-
tedby HU S where S is finite. Again as in [2], a finitely generated pair
(G, H) is said to be accessible if G can be regarded as the fundamental
group 7(G, X) of a graph of groups (G, X) satisfying the following con-
ditions.

(i) The underlying graph X is finite,

(ii) Every edge group is finite,

(iii) For some vertex Po’ H=G and

P
0
1 1 s
Res: H (GP , ZGPO)*H H, ZGPO) is injective.
. 1 o
(iv) If P iPO, then H (GP, ZGP) =0, i.e, GP has at most one
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end.

It is proved in [2] that a finitely generated pair (G, H) is accessible
if and only if K(G, H), the kernel of the restriction mapping
H'(G, ZG) ~H'(H, ZG), is a finitely generated ZG-module. In fact the
result is proved with a general commutative ring R replacing Z. In
this paper attention is restricted to the case R = 7,

A finitely generated group G is said to be accessible if (G, 1) is
an accessible pair. It follows from [2, Theorem 5. 8] that if G is

accessible, then (G, H) is an accessible pair for every subgroup H.

Theorem 1. Let H be a torsion-free subgroup of the group G,
and suppose (G, H) is an accessible pair, If I.HG is a direct summand

of IG’ then H is a free factor of G.

Theorem 2. Let H be an infinite cyclic subgroup of the finitely
generated group G. If IHG is a direct summand of IG’ then H is a

free factor of G.

The proof of Theorems 1 and 2 which are given in §2 and §3 depend
heavily on the results and techniques of [2].

If H is infinite cyclic then IH = ZH. If H =G, then ].HG = ZG.
It follows from [2, Lemma 5.1] that Res: H'(G, ZG) = H'(H, ZG) is
surjective if and only if Hom (IG, ZG) = Hom (IHG, ZG) is surjective.
But Hom(IG, IHG) - Hom(IHG, ]_HG) is surjective if and only if I.HG is
a direct summand of I.. Thus, by Theorem 2, Res: H'(G, ZG)~H!(H, ZG)
is surjective if and only if H is a free factor of G. This is precisely

the result that is needed to strengthen the unknotting criterion of Swarup
[7]. '
Let f: 8" »g""?
in the (n+2)-sphere. Let T be a regular neighbourhood of f(Sn) in
Sn—'-2 and let M be the closure of Sn+2 - T. Let S be a copy of f(Sn)
in 9T which bounds an (n+1)-submanifold of M. In[7] G. A. Swarup

shows that if S is homotopically trivial in M and if ™ (M) is accessible,

be a locally flat PL embedding of the n-sphere

then M has the homotopy type of a circle. It follows thatif n=1 or
n = 3, then f is unknotted. The only place in Swarup's proof where

accessibility is used is in proving that if H is an infinite cyclic subgroup
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of an accessible group G and Res: H' (G, ZG) —» Hl(H, ZG) is surjective,
then H is a free factor of G. As has been remarked above, the assump-
tion that G is accessible can be replaced by the weaker requirement that

G be finitely generated. Thus we have the following result.

Unknotting criterion. If S is homotopically trivial in M, then M

has the homotopy type of a circle.

For n =1, this result is well-known from [5]. In a similar way it

is possible to remove the accessibility condition from Theorem 3. 6 of [8].

2. Proof of Theorem 1

Let H be a non-trivial torsion-fre:e subgroup of the group G and
suppose (G, H) is an accessible pair, Let (G, X) be a graph of groups
satisfying conditions (i)-(iv) of §1. If IHG is a direct summand of IG’
then I.HL is a direct summand of I. for any subgroup L, H =L, by
[1, Lemma 4. 4]. Let L= GPO,
Now K(L, H) = 0, and so it follows from [2, Lemma 5. 1] that
Hom(IL , ZL) —~ Hom(I.HL, ZL) is injective. Since IHL is a direct
L C ZL, it follows that H=L. Let e € E(X) be

such that o(e) = Po' Since H is torsion free, Ge is trivial. It follows

L
the vertex group of (G, X) containing H.

summand of IL and I
immediately that H is a free factor of G.

3. Proof of Theorem 2

Let M=G *H
is infinite. In the associated Mayer-Vietoris sequence [4]

L where G, L are finitely generated groups and H

H(H, ZM) -~ H' (M, ZM) » H'(G, ZM) @ H' (L, ZM) » H'(H, ZM)

H'(H, ZM) = 0, since H is infinite and H (G, ZM) = H' (G, ZG) B ZM.
Now the kernel of the restriction mapping Hl(G, ZM) - Hl(H, ZM) can be
regarded as K(G, H) ®ZGZM and there is an isomorphic preimage in

H' (M, ZM).
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Lemma 1. Let G be a finitely generated group and let S be a
finite subset of H' (G, ZG). Then G can be regarded as the fundamental
group 7(§G, X) of a graph of groups (G, X) satisfying the following con-

ditions.
(i) The underlying graph X is finite.

(ii) Edge groups are finite.
(iii) For each vertex P, S C K(G, GP).

A proof of Lemma 1 is not included as it is essentially a repeat of
the argument of [2, Theorem 5.5]. The argument given there is specifi-
cally for the case when S is a finite generating set for K(G, H) where H
is a subgroup of G, but there is no difficulty in adapting the argument to
the case considered here.

Suppose now that H is an infinite cychc subgroup of G and IHG
is a direct summand of IG. Thus Res: H (G, zG) -u' (H, ZG) is sur-
jective Now H has two ends and so H (H, ZH) = Z, It follows that
u' H, 2G)=Z® HZG is generated as a ZG-module by a single element
s. Let S= {0} where Res(c) =s. Let G= (g, X) be the corres-
ponding decomposition of G as given in Lemma 1. Suppose that for some
vertex P, GP has more than one end. Choose a finitely generated group
LP containing GP such that LP
LP = GP X F where F is free abelian of rank two. Form G1 =G*G LP.

Repeating this process a finite number of times one eventually obtains an

has one end, e.g. we could take

accessible group A. Now ¢ € K(G, GP) for every vertex P. By the
remarks at the beginning of the section it follows that there exists

o € H' (A ZA) such that Res(o ) generates " (H, ZA). Thus

Res: H' (A, ZA) —~ H (H, ZA) is surJectlve It has been seen that this
implies that IHA is a direct summand of IA' Therefore by Theorem 1, H
is a free factor of A. By the Kurosh Subgroup Theorem, H is a free
factor of G, This completes the proof of Theorem 2,
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13 - Trees of homotopy types of (m, m)-complexes

MICHEAL DYER

University of Oregon

Let 7 beagroupand m an integer = 2, A (7, m)-complex X is
a finite, connected CW complex with dimension = m having fundamental
group 771X isomorphic to 7 and trivial homotopy modules ﬂiX for
1< i< m. Examples of (7, m)-complexes are finite, connected two-
complexes (m = 2), lens spaces, and the m-skeleton of any Eilenberg-
MacLane space of finite (cell) type, Also, if X is a (7, m)-complex,
thensois X v iSm, where iS™ is a bouquet of i spheres of dimension

m.

Problem. For a given (7, m), classify the homotopy types of

such complexes.

This homotopy classification can be conveniently expressed using
the language of trees. The homotopy tree HT(7, m) is the directed tree
whose vertices consist of the homotopy types of (7, m)-complexes; vertex
[X] is joined by an edge to vertex [Y] iff X v S™ ~ Y. The tree is con-
nected by a theorem of J. H. C. Whitehead [Wh, theorem 14] which says
that for any two (7, m)-complexes X, Y there are integers i, j such
that X v is™ = Y v jSm. There are clearly no circuits. We define
the minimal Euler characteristic Xmin(ﬂ’ m) = min{(—l)mx(X) ]X is a
(7, m)-complex}. The level 1(X) = -1)™Mx(x) - X min

root if X has no predecessor in the tree; a minimal root (minimal

(m, m). X isa
complex) if Z(X) = 0. The problem now is to describe the tree HT(n, m).

1. Finite fundamental group

The form of the trees HT(w, m) for 7 a finite group is taking
definite shape. We say that a finitely generated, torsion free 7-module
(lattice) M satisfies the Eichler condition (E) if the semi-simple Q-

algebra EndQﬂ(QM) (Q is the rationals) has no simple component which
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is a totally definite quaternion algebra over its center [Sl, page 176].

Theorem. Let 7 be a finite group. Any two (7, m)-complexes
at level 7 = 2 have the same homotopy type [Wi], [Ds]' If X isa
minimal (7, m)-complex and me ® Z7 has (E), then any two complexes

at level 1 have the same homotopy type [Brl.

It is remarkable that ﬂmX © Z7 nearly always satisfies (E). For
example, for 7 finite, Xmin(ﬂ’ m) =0 [SZ]; by [Dl, prop. 5.1]
me ® Z7 has (E) provided Xmin(”’ m) > 0. This always holds if m
is even,

min(ﬂ’ m) = 0, then

7 must be periodic of period m + 1, Furthermore, the minimal (7, m)-

Proposition. Let 7 be a finite group, If x

module in this case is the trivial 7-module Z.

Proof. Let X be a (7, m)-complex such that x(X) = 0. Argu-
ing on the cellular chain complex of the universal cover X of X, one
shows that Z-rank 7_X =1. Hence, X ~ 8™ and 7 acts on X without
fixed points. This forces m to be odd and 7 to act via orientation
preserving homeomorphisms [H, p. 290]. Thus Z = nmX is the trivial
m-module and 7 is periodic with period m + 1. /

Furthermore, Z ® Z7 has (E) if Z7 has (E). Now let @ be the
class of all pairs (7, m) such that there is a single homotopy type in
HT(7, m) at each level I > 0. We see that the following pairs are in @®:
(@) 7 not periodic and m = 2, (b) 7 is periodic, Z7 satisfies (E),
and m = 2, (¢) 7 is periodic, and m + 1 is not a period of 7. Then the

homotopy tree looks at worst like figure 1A:

level
3
2
m
1 (X v §7] -
/,v/ 4
0 o [X] [X] e .. & ...
A:(m, m) e® B:(7, m) e®R C

Figure 1. HT(m, m) for 7-finite.
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Let ® C ® consist of pairs (7, m) such that HT(7, m) has a
single minimal root. Then ® contains (7, m) such that (a) 7= Zn
and m even [DSI], [CS], [Dl], (b) 7= zZ  *Z,and m even [Dz]’
and (¢) 7= D2n’
See figure 1B.

the dihedral group of order 2n (n odd), and m even.

The worst possible tree is given by figure 1C. Such non-minimal
roots exist [D4]; the dotted lines indicate a question. The Jordan-
Zassenhaus theorem [S1] shows that there are only finitely many ver-
tices at each level. For w finite abelian, distinct minimal roots were
discovered by W, Metzler [M] and a lower bound on their number is
given in [Si] and [SD].

2. Infinite fundamental group

For 7 infinite, very little is known. If 7 admits a K(7, 1) which
is a (7, m)-complex, then there is a single minimal root in HT(w, i) for
iz m [C]. Furthermore, in this case, the tree HT (s, i) (i = max(m, 3))
is identical with the tree of isomorphism classes of stably free, finitely
generated projective m-modules (what about 7 = Zn?). If 7 is finitely
generated and free, then HT(m, i) looks like figure 1B [Wa], [B]. An
intriguing example of M. Dunwoody [Du] exhibits a non-minimal root at
level 1 in HT(T, 2), where T is the trefoil group. For 7 a finitely
generated abelian group of rank n with torsion and m < n, there are

distinct minimal roots [D3]'

Problems. (a)*For 7 finite abelian, how many distinct homotopy
types are there at level 07?

(b)  Add to the list of pairs (7, m) € ®.

(c) Do there exist (7, m)-complexes X, Y such that
Xv2s™ayv2s™ but Xxv sT 2y v s
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14 - Geometric structure of surface mapping
class groups

W. J. HARVEY

Institute for Advanced Study, Princeton and King's College, London
§1. Introduction

This article will describe some recent progress on the structure of

the group I‘g of mapping classes for a compact surface Sg of genus

g = 2. A mapping-class is an isotopy class of homeomorphisms (usually
assumed to be C Oo diffeomorphisms); occasionally it will be convenient
to use the alternative definition of it, valid by virtue of Nielsen's theorem,
as an element of the outer automorphism group of the fundamental group
m (Sg).

I shall not attempt here to catalogue the many ways in which these
groups impinge on various parts of mathematics, nor will their properties
be developed comprehensively. My concern is with two aspects of the
theory, which bear a close relationship to each other. One of them is the
purely combinatorial study of how Fg operates on the space of simple
loops in Sg’ and the other is the geometric action as the Teichmuller
modular group on the classifying space Tg = T(Sg) of complex structures
on the surface Sg. It transpires that in attempting to analyse the boundary
structure of T(Sg) and the extended action of Fg on it, one is naturally
led to the former question,

My primary aim in the description of Teichmiller space (§ § 3, 4)
which forms the basis of this account has been to provide sufficient back-
ground to understand the geometric formulation of Thurston's recent
theorem on classification of mapping-classes, in terms of both their action
on T(Sg) and the dynamical systems determined by them on Sg. The
last two sections describe some of my own related work on the boundary
action of I" and certain group theoretical properties of I‘g which derive
from the earlier discussion,

It should be noted that part of §4 appears in more extended form in
the paper [4] of Bers, which gives a proof of the classification theorem
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independent of Thurston's results. In particular the interpretation of
Teichmiiller's theorem in terms of measured foliations comes from
there.

I should like to acknowledge here my gratitude to the many people
who have contributed to my understanding of the material presented;
in particular I have benefited greatly from discussions with Bill Abikoff,
Lipman Bers and John Hubbard.

§2. Geometric classification of diffeomorphisms

If S is a surface of genus 1, then any diffeomorphism of S may
be viewed as a self-mapping of the plane preserving the lattice of integer
points, and the mapping classes in I‘l correspond to elements of SLZ(Z’).
Note that here and in the sequel we restrict attention to orientation-
preserving maps.

The algebraic classification of the matrices has two geometrical
interpretations, one in terms of the action on the plane (and on S) and
the other stemming from the action as fractional linear transformations
of the upper half plane U. We review them briefly now as a significant

first impression of the general pattern.

Definition. A matrix in SLZ(Z) is termed elliptic, parabolic or

hyperbolic according as the value of (Tra.ce)2 is < 4, =4 or > 4

Elliptic matrices are conjugate to rotations and constitute the torsion
part of l"l, forming two conjugacy classes of maximal cyclic subgroups
of orders 4 and 6. Such elements act on U as non-Euclidean rotations
fixing some interior point 7 € U; this occurs precisely when the lattice
AT generated by 1 and 7 admits a complex multiplication, which corres-
ponds to the fact that the Riemann surface C /AT has a conformal auto-
morphism distinct from the canonical involution.
é %). Each

fixes a single boundary point of U in the Pl-orbit QU {«}. Inthe plane,

Parabolic matrices are typified by the element a= (
o fixes the foliation by horizontal lines, which projects to an invariant

foliation on the torus with closed leaves. Notice that the loops in S trans-

verse to the fixed 'horizontal' loop are subjected to a 'shear' map, repre-
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sented by the dotted lines in the diagram below.

0
(1) Y onien 7
s /
7 %
/ 7
B a(B),” /
s s
// 4
Ve //
b _ s
0 A 1 a(A)
(o) @

Modulo isotopy, this is equivalent to the result of cutting along the
horizontal loop A, applying a 360° twist and rejoining the edges, a
manoevre known as a Dehn twist about A.

In contrast, hyperbolic elements have distinct eigenvalues A and
7\_1, with A > 1 an algebraic integer. There are then two irrational
fixed points in R, and the action on U is a non-Euclidean translation
from one point in the direction of the other one. By its action on the torus
a hyperbolic element generates an Anosov-flow: it fixes two mutually
transverse foliations corresponding to the A and )fl eigenvectors.

There are no closed leaves in this case. One visualises the diffeomor-

Segments of two
~ transverse leaves

on the torus.
~
s
~ N

phism as a map which preserves the two foliations while expanding distance
by a factor X along the one (called unstable) and contracting by At along
the other (stable) foliation. For further discussion, consult [1, 10].

When the genus is at least 2, there is no immediate classification
of diffeomorphisms, except for torsion. Nielsen [9] proved that a periodic
mapping-class must contain a homeomorphism of the same order, and
again it can be shown that this determines a complex structure on the

surface such that the mapping is a conformal automorphism.
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The rest of the picture has come into focus only recently, following

Thurston's work on singular foliations of surfaces (reported briefly in

[11]).

Theorem. Each mapping-class of infinite order in I"g (g=2

contains a diffeomorphism of precisely one of the following types:

(i) reducible: leaves invariant a non-trivial set of loops in S;

(ii) pseudo-Anosov: fixes two mutually transverse singular folia-

tions.

Note. A reducible diffeomorphism may permute loops rather than
preserve each one., It represents a mapping of the surface of lower genus
obtained by cutting up S along the various loops (of course this may not
be connected). Examples of this type are readily constructed using Dehn
twists and permutations. They are of course the analogue of parabolic
matrices in Fl. We shall elaborate on the second category of diffeo-
morphism in §4 after some preliminary discussion of the higher-genus

analogue of U.

§3, Teichmiiller space and the modular group

In order to simplify the exposition, here and elsewhere we are
dealing only with compact surfaces Sg’ although the entire theory extends
to the case of surfaces with finite boundary Sg’ n and a comprehensive
treatment even for the case in hand would involve the more general setting
as we shall see in §5.

There are two formulations for the base space of the geometric action
of I‘g, one in terms of Sg and the other involving the group G = 7, (Sg)

regarded as a Fuchsian group. It is convenient to use both.

Definition. A marked complex structure on Sg is a diffeomorphism
f: Sg =X with X a Riemann surface.

A marked complex structure determines an isomorphism r = T
from G onto a co-compact Fuchsian group GX C L =AutU, with
X = U/G, by the classical uniformisation theorem. Notice that (rf, GX)

is unique up to composition of r_, with an automorphism of U, which

f
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changes G, to a conjugate group in L.

X
The Teichmiller space Tg of S is a classifying space for com-

plex structures on Sg, in the sense that its points are equivalence classes
of marked structures. Here two structures (fl, Xl), (fz’ Xz) are re-
garded as equivalent if there is a morphism «: X1 nd X2 such that the

diagram commutes up to isotopy. An equivalence class of structures on

Sg is uniquely specified by a set of isomorphisms {y° r, v € L} having
discrete co-compact images in L. Notice the analogy with the genus 1
case, where a class of complex structures is specified by a choice of
generators for a lattice subgroup A € C, up to multiplication of each by
a non-zero complex number,

One useful way to construct a parametrisation of Tg will be des-
cribed now - we shall need to describe a different one in §4 in order to
inter-relate the type of a diffeomorphism and the geometric action on Tg'
Choose a partition of S, that is, a maximal collection of simple loops in
Sg which are disjoint and which define mutually distinct non-trivial isotopy
classes. It is a matter of elementary surface topology to show that they
are 3g - 3 in number and divide Sg into a union of three-holed spheres
('parts'). To specify a class of structures on Sg we measure the traces
of a set of matrices in SLQ(]R) determined thus:- fix a choice of decompo-
sition for G into a collection of subgroups which represent the various
component parts, with appropriate amalgamations over the various cyclic
infinite subgroups representing the loops; if r: G—= L is a representative
homomorphism for the class of complex structures, there is a set of
6g - 6 matrices representing elements of L. whose traces determine the
class of r. From these, 3g - 3 give lengths of geodesic loops, while the
others provide a measure of how the two banks of a loop are fitted together
in assembling the surface from component parts. More details of this
rather intricate procedure may be found in [14, chap. 9] and references

cited there.
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Using roughly the same description of Tg, Fricke gave in essence
a proof of the discontinuity of the group Fg nearly 50 years ago. The
action of I‘g on Tg is defined as follows, Let [f], [@] denote classes
of structure f: S—+ X and diffeomorphism «. Then the rule

: I X T = T_ obtained by setti
p ¢ o g n y setting

(], E) P [tea

]
determines a I‘g—action as real analytic homeomorphisms of Tg. Equi-

valently one can let I‘g operate on classes of homeomorphisms by

(o rdlx 1=l ay,

with & eAut(77l (S)) induced by a@:S—S.

Theorem. The p-action of I‘g is properly discontinuous.

We sketch the proof. Let {fn: S=+X,n=1,2 ... } bea
sequence of structures which converges to f: S = X, with {rn: G= Gn}
a corresponding sequence of isomorphisms tending to r: G+ G'. Let
Bn =r o rl.g - Gn: since the {rn} are all Fg-equivalent, we may
assume that the Bn are automorphisms of G'. Each Bn permutes the
set of traces of group elements, which has no finite accumulation point,
so almost all Bn actually fix all traces in G'. Therefore they extend to
automorphisms of the Lie group L, since G' contains non-commuting
hyperbolic elements. This implies that the sequence {[fn]} of classes
terminates after finitely many steps, so no I‘g— orbit accumulates in Tg.

Notes, 1. The action is effective if g = 3, In 1“2, as in 1“1,
there is a central involution which fixes the whole space; this corresponds
to the automorphism of interchanging sheets which all surfaces of genus 1
and 2 possess.

2. Tg carries a structure of complex manifold, in which the
action of Fg is biholomorphic. Remarkably, Fg is the full group of
automorphisms of Tg in this structure, by a theorem of Royden. The
quotient space by the action is the moduli space of Riemann surfaces % g’

each point of it representing a Riemann surface modulo biholomorphic
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equivalence; the discontinuity of Fg implies that I%g inherits a natural
structure of complex V-manifold from Tg'

3. Since Tg is a topological cell, it follows by the Smith fixed
point theorem that all torsion elements of Fg fix a non-empty set; this
implies the result of Nielsen mentioned in §2. A closer analysis shows
that the fixed set of a mapping class [a] is a complex submanifold of Tg
isomorphic to a Teichmiiller space for the ramified quotient surface
S/ a). Further consequences are z precise upper bound of 4g + 2 for
the order of torsion elements in Fg (due originally to Wiman), and the

finitude of the number of conjugacy classes of torsion subgroups ([7]).

§4. Quadratic differentials and measured foliations

The connexion between type of a diffeomorphism (§2) and the geo-
metry of its action on Tg comes from a deep theorem of Teichmiller
which relates the structure of Tg to quadratic differentials on a reference
surface. For a detailed account the reader should refer to [2, 8]; we
present only an outline sufficient to exhibit the dichotomy of Thurston's
theorem.

Let £f: S — X be a fixed complex structure. We recall that a holo-

morphic quadratic differential & on X is a global section of the second

power of the canonical (cotangent) bundle of X; this is in other words a
collection of holomorphic functions ¢(z) in the local coordinates z on X,
which transform under change of parameter in such a way that <1>(z)dz2
remains invariant, The vector space Q(X) of all such & on X has
(real) dimension 6g - 6 by the Riemann-Roch theorem.

Each & € Q(X) determines a canonical pair of foliations on X, with
algebraic singularities at the zeros of &; their leaves are the horizontal

and vertical trajectories of &, that is, the curves in X which are mapped

into horizontal and vertical lines in € under the local mappings

zr E(z) = fz $(z)%.dz .
0

We shall refer to them as the horizontal and vertical foliations of ¢. Of
course they could equally welll be defined as the foliations associated to

1 1
the closed real forms Im &%, Re ®* on X. Note that there is a natural

261



way to measure distance between leaves, using the Riemannian metric
ds = ldC l Near a zero of & there are n + 2 distinct branches of C_l,
where n is the order of the zero. The picture below shows a simple

zero and a generic point,

We are ready to state the beautiful theorem of Teichmﬁlle\r which
places any pair of marked complex structures f1 s f2 in a precise geomet-

rical relationship.

Theorem. There exist quadratic differentials <I>1, <I>2 on the

Riemann surfaces Xl, X2 and a diffeomorphism w: X1 - X2 isotopic

to f o f{l such that in the local coordinates Cj given by <I>j G=1, 2),

w is given by

[

1
_ w2 w2
§1H§2—K .Re §1 + iK “ Im {’l s
where K = K(w) is constant on Xl.

Note. 1. The geometric interpretation is that w carries the

horizontal and vertical foliations of tI>l into those of <I>2, multiplying
1 L
distance along horizontal leaves by K™ 2 and along vertical leaves by K?Z.

This amounts to a K-quasiconformal diffeomorphism with constant

'dilatation’, i.e. the tangent mapping to w at a point of X1 distorts by
a constant factor K everywhere on Xl (except at zeros of <I>l) taking

tangent unit circles into ellipses with axis-ratio K. If K=1, then w is
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biholomorphic, and the two structures fl, f2 are equivalent.

One should regard the map w as the solution to an extremal
problem, that of minimising inside a given mapping-class the norm of
the distortion function over the whole surface. The extremal map is
unique, in that any other diffeomorphism distorts by a factor greater
than K on a non-negligible set; the quadratic differentials are unique

up to a real multiplicative constant.

Note. 2. An immediate consequence of the theorem is the global

metric d on Tg determined by
d([fl], [fz]) = log K(w).

The final ingredient for the representation of 1"g is provided by
the observation that the cotangent space to Tg at the point given by [f]
with f: §= X is canonically isomorphic with Q(X). This corresponds
intuitively to the fact that every complex structure near [f] may be
achieved, starting from [f], by specifying some differential & and
applying an extremal 'Teichmiiller' mapping of small distortion K > 1.
Such a mapping can be characterised as the solution w = w(k, ) toa
certain first order partial differential equation (Beltrami's equation),

dw (z) dw
==k 22 2
z )]
in local coordinates on X, with k = —K;—ll, 0 =k < 1, The homeomor-

phism w(k, ®) amounts to following the flow determined by the horizontal
$-foliation for time K_é and the vertical flow for time K%.

From this local picture we can define a covering of Tg by rays in
direction & emanating from [f], noting that w(k, ) = w(k, A®) for any
real X > 0. The end result is a representation of Tg as a unit ball in
IRN, N = 6g - 6, with the added bonus that there is a natural way to extend
it to a closed ball by associating to the ray {w(k, ), 0 =<k < 1} the

end-point £(®) = lim w(k, &), which is viewed as the (stable) horizontal
k—>1-
d-foliation of X. After checking that this process is independent of the

choice of base point [f], we have the basis for a complete description of

the classification.
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Proposition. There is a compactification of Tg as a closed unit

ball, whose boundary points consist of measured foliations on Sg, on

which Fg acts as a group of diffeomorphisms.

The precise comparison with the boundary constructed by Thurston
will not concern us here. We observe that the action of Fg on the
boundary sphere is defined by a sort of co-adjoint representation to the
action p: I‘g X Tg—>Tg: conjugation by @ in Diffl (S)Jr differentiated
at the identity (e) induces a linear map on the tangent space at (e) and
a similar procedure projected to Tg gives a linear map on the cotangent
space to Tg at any specified base point which transforms compatibly
with base change.

Now the theorem of §2 derives from the Brouwer fixed point theorem,
together with a study of possible fixed sets in the boundary sphere. A
reducible mapping-class fixes a single boundary point; it is a foliation
with closed leaves whose isotopy classes are left invariant by the diffeo-
morphisms in the class. A pseudo-Anosov class fixes two boundary
points, a pair of mutually transverse foliations which have no closed
leaves. There is then an axis in Tg’ i. e. a geodesic line in the metric
d defined above which joins the two fixed points and on which the mapping-
class acts by translation. This motivates the appelation hyperbolic for
these elements. The constant distortion factor K of the corresponding
extremal mapping may be interpreted in various ways (see [11]) as an
eigenvalue - log K is the entropy of the diffeomorphism.

Note. The preceding paragraph should not be viewed as more than a
heuristic description or interpretation. The Teichmiller compactification
described above does not admit any continuous extension of the Fg-action,
by a recent result of S. Kerckhoff (Ph.D. thesis, Princeton 1978).
Thurston's boundary is more natural in that sense, but involves consider-

ably more machinery than we can conveniently handle here,

T Diff; (S) is the subgroup of Diff(S) which preserves a local area element
on S. See for instance [V. Arnold, Ann. Inst. Fourier, 16 (1966), 319-61].
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§5. Cuspidal boundary components of Tg: a simplicial action of Fg

We shall examine in this section the finer boundary structure for
T arising from a combinatorial study of the ways in which complex
structures on S may degenerate. In §3, a parametrization of Tg was
described with reference to a fixed set of 3g - 3 loops in S; in this
frame, allowing the 3g - 3 lengths (or a subset) to approach 0 describes
a topologically-fixed degeneration process. It is a deep result of Teich-
milller space theory (also derivable from the Deligne-Mumford moduli
of stable curves in algebraic geometry) that all degenerations of complex
structure, properly formulated, can be described thus, modulo the opera-
tion of I‘g, for some set of loops. More precisely, there is a collection
0T  of cuspidal boundary components for Tg, one for each partition
(distinct set of disjoint loops) in S. Approaching such a boundary com-
ponent is effected by pinching the loops to points, to obtain a set of irre-
ducible subsurfaces with punctures, glued together by identifying pairs of

punctures.

pinching

—_

S, S us

The boundary components carry natural structures of (complex)
manifold compatible with intersections, such that Tg U B'I‘g projects,
modulo the operation by l“g, to a compact space & g containing the moduli
space Iﬁg of §3, It is known in fact that :T;g is a projective variety.

Notice that the operation of Pg on BTg is the permutation action
on the space of simple loops in S, combined with actions of stability
subgroups on individual components. In order to describe this coherently,
we follow a procedure similar to that of Borel-Serre [6]. A simplicial
complex T o is constructed from the set £(S) of all partitions of S, by
giving £ the partial ordering of inclusion of sets:- an n-simplex of Tg
is a partition with n + 1 loops whose faces are the (n - 1) simplices
corresponding to subpartitions with n loops; we also denote by T o the

geometric realisation of this abstract complex. Elementary arguments
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show (see [12] for terminology) that Fg acts simplicially on Tg and

the following result holds.

Proposition. 7 is a connected thick chamber complex if g = 2,

and the quotient T'g/l"g is a finite complex 9IU.

The above discussion of cuspidal boundary components leads to the
conclusion that BTg and 7 o are topologically equivalent in the precise

sense given below.

Theorem. The spaces aTg and Tg have the same homotopy type.

The actions of Fg on the two spaces are compatible with the homotopy

equivalences.

A detailed study of T o and the I‘g-action is in progress and will
be published elsewhere. Two points of particular interest are mentioned

below,

Notes. 1. Let T

A denote the stabiliser of a partition
A= { Zl,

ceey l3g-3} C &£. Then there is an exact sequence

1-Z&...9Z—> PAL_’II-’l
-—

3g-3

where H is the group of automorphisms of the dual graph of the decom-
posed surface determined by A, and the free Abelian group is generated
by Dehn twists about the loops in A. A similar structure exists for
stability subgroups of non-maximal partitions, involving mapping-class
groups of irreducible subsurfaces of S\{A}. It can be shown that only
finitely many conjugacy classes of primary elements in 1‘g fix points of
T U T .

g g

2. There is a classification of elements in I"g, deriving from the

action on 7 o which has a similar flavour to the theorem of §2. Let
o€ l"g; the action of @ on the 1-skeleton of the first barycentric sub-
division of T g can be lifted to an automorphism @ of the universal
covering tree. According to a theorem of Tits [13], either (i) & fixes a

vertex or edge of the tree, or (ii) there is an infinite chain preserved by
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&, on which it acts by translation. The various liftings of « all fall
into the same category; case (i) corresponds to reducible elements,

case (ii) to hyperbolic. Elements of finite order should be excluded from
the dichotomy. An interesting problem is to find an interpretation in the

T g framework of the eigenvalues of hyperbolic elements.

§6. Further algebraic properties of Fg; some open questions

The algebraic structure of Pg is strongly affected by the geometry
of the surface Sg, and especially by the fact that nl(Sg) is a Fuchsian
group (if g = 2) with non-trivial deformations. We shall not enlarge on
that here, beyond citing some important properties derivable from this
fact. The first is the result of E. Grossman that I‘g is residually finite.

Here are two easy consequences of particular value.

Proposition. (a) Fg is virtually torsion-free.
(b) The action of Fg on Tg U aTg is virtually free.

Both results follow from the finiteness of the number of conjugacy
classes of maximal cyclic subgroups having non-trivial fixed sets in
either T or 9T , mentioned in §3 and in §5 note 1. We note that (a)
was first proved by Serre and Grothendieck: it results by consideration
of 'congruence subgroups' of I' which act trivially on the homology of
S when reduced modulo n (n = 3) - a result of Minkowski shows that the
reduction homomorphism: SLN(Z) - SLN(Z/nZ) has torsion-free kernel
if n= 3,

The importance of the proposition lies in the implication that the
compact moduli space X has a finite covering space that is a real
manifold, In turn this result implies that 1"g is finitely presented (c. f.
[14, chapter 8]), a theorem due to McCool.

Here are some open questions. Many others are to be found in

Birman's monograph [5].

1. Is T g arithmetic? It has many arithmetic properties but no

(obvious) representations.

2. What is the virtual cohomological dimension of I‘g? Clearly

we have
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3g—35v.c.d1"g56g-7.

One suspects the answer is 3g - 3.

3. Is there a simple geometrically-based presentation for I‘g?
Even in genus 2 (the only known one) the presentation is not terribly
geomelric.

4, Do the methods of this paper admit any generalisation, say
to the study of Out(G) for G a finitely presented matrix group? Here
it should be noted that if G 1is an arithmetic subgroup of an algebraic
semisimple group (rank = 2) then Out G is finite (A. Borel).
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15 - Cohomology theory of aspherical groups and of
small cancellation groups

JOHANNES HUEBSCHMANN

University of Heidelberg

An aspherical group @ is a discrete group which admits an
aspherical presentation (X |R) [9] (p. 156). Important classes of groups
are aspherical (e.g. small cancellation groups, in particular almost all
Fuchsian groups, one-relator groups, knot groups).

I Q=X IR), denote by F the free group on the set X of genera-
tors, and by N the normal closure in F of the elements of R. The
commutator factor group NAb = N/[N, N] is known to be a Q-module in
a natural way. If Q= (X|R) is aspherical, the so-called identity problem
[6], [9], [10], [11] which is, roughly speaking, that of determining the
Q-module structure of Na'b, has a simple solution. In fact, the following
holds [9] (p. 158):

Identity Theorem. Let Q= (X|R) be aspherical, and assume that

no element of R 1is conjugate to another or to its inverse. Then the Q-

module Nab decomposes as a direct sum of cyclic submodules Nr

generated by the elements r[N, N], r €R, each defined by a single rela-
tion Er' r[N, N] = r[N, N] with Er € Q the image of the root z €F

of r=zr.
— r

Actually, a converse also holds. In [4] we prove the

Theorem. Let Q= (X|R). If the Q-module N*° has the structure
given in the Identity Theorem, then (XIR) is aspherical and no element

of R is conjugate to another or to its inverse.

The structure of Na]O described in the Identity Theorem immediately
gives rise to a nice small free resolution of the integers over the group
ring ZQ [3], [6]. This leads to simple formulas for the cohomology of
an aspherical group Q with coefficients in any Q-module A. In fact, for
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k=3 we get Hk(Q, A)=1 Hk(Cr, A), with Cr the cyclic subgroup of
R

Q generated by Zr. Moreover, Er has exact order a, (the exponent of
r € R) [4]. This has drastic consequences for the class of finite sub-
groups of an aspherical group. For the following (unpublished) result of

Serre applies:

Theorem (Serre). Let G be a group and {Gi}ieI a family of

subgroups such that for q = q_ the canonical map Hq(G, M) =~ l'IHq(G., M)
0 i

is an isomorphism for every G-module M. If K is a finite subgroup of G
there is i €I, g € G such that K C gGig_l and K n thh'l =1 if j#i
orif j=1i and hngi.

A proof is reproduced in [4].

Serre's Theorem clearly yields a straightforward classification of
torsion elements in an aspherical group. In particular, any small can-
cellation group is aspherical [4]. Hence we may classify elements of
finite order in such groups. This had been an open question under the

so-called non- metric conditions [8], [9].
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16 - Finite groups of deficiency zero

D. L. JOHNSON and E. F. ROBERTSON

University of Nottingham and University of St Andrews

The aim of this survey is to give a catalogue of known finite groups
with deficiency zero. The deficiency of a finite presentation (X‘R) is
|X| - |R|, and the deficiency def G of a group G is the maximum of
this number taken over all finite presentations of G. It is easy to show
[21, Theorem 2. 6] that finite groups have non-positive deficiency, so we
are dealing with an extremal case. It was known to Schur [34] that the
multiplicator M(G) of a finite group G can be generated by -def G
elements, and G is called efficient [15] if M(G) needs this many genera-
tors. While not all finite groups are efficient [36], the problem remains
open in the nilpotent case. For more information on this and other related
problems on minimal presentations, we refer the reader to the survey
[42].

The ordering of our sections is basically chronological, according
to the date of the first significant appearance of groups of the corresponding
type, and we approach each section modulo its predecessors, cross-
referencing where appropriate. Our notational conventions are fairly
standard so that, for example, (a, b) denotes the highest common factor
of the integers a, b, and [x, y]=x 'y 'xy =x 'x for x, y members
of a group G. The number of invariant factors of a finite abelian group is
often referred to as its rank.

The authors would like to express their gratitude to Dr C. M.
Campbell for his machine implementation of some of the computations,
and for some help with the references, and the second-named author grate-
fully acknowledges the hospitality of the University of Warwick during

preparation of the article.

§1. Centro-polyhedral groups

The earliest recorded examples of finite, non-cyclic groups of
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deficiency zero appear in the work of G. A. Miller [30], who discovered

them in the course of his experiments on the von Dyck groups:

b

@, b, ¢)={(x, v, z|x® =y =2%=xyz = 1). 1)

It is well known that (a, b, ¢) is finite if and only if
12l + 1] + J1/e] > 1, (2)
and the solutions of this inequality yield the polyhedral groups:
(2,2,m =D, (2,3,3)=A, (2,3,49)=5, (2,3,5)=4A,,

the full symmetry groups of the n-dihedron, tetrahedron, octahedron

(cube) and icosahedron (dodecahedron) respectively. A group of deficiency
zero is obtained from (1) if either the fourth or the second "=" sign in

the relations is replaced by a ", ", yielding the classes of groups

(a, b, ¢) (the binary polyhedral groups) and {a, b|c) respectively.

While for the (a, b, c) the order and the signs of a, b, ¢ are immaterial,
this is no longer the case for the modified groups, and there results a
bewildering array of interesting* groups. These are dealt with exhaustively
in [14], and all turn out to be cyclic central extensions of and /or by the

corresponding parent groups. For example, the group
(-3, 512) =¢x, y Iy’ = @y)? = 1)
has the presentation
(x,7, 2, t|x" =y’ =2’ =xyz=t* [x, t]= [y, t] = [z, t] = 1),

and is thus a central extension of Z4 by the binary icosahedral group
(2, 3, 5) = 8SL(2, 5). Infact, SL(2, 5) furnishes our only known example
of an interesting perfect group (but see §8).

That interesting groups are pretty diverse is already apparent;
virtually the only common property of the centro-polyhedral groups is that

* A group is interesting if it is a member of the class named in the title
of this article.
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of being 2-generated. For example, the binary dihedral groups (2", 2, 2),
though nilpotent and metacyclic, have unbounded order. Being of maximal
class (viz. n + 1), they also provide examples of interesting groups of
unbounded nilpotency class. Then again, centro-polyhedral groups are
not all soluble, though A5 is the only non-abelian composition factor to

occur, and all the soluble ones have derived length at most three.

§2. Metacyclic groups

The groups (2", 2, 2), sometimes called generalized quaternion
groups, were shown to have trivial multiplicator by Schur [34], along with
the quasi-dihedral groups and a further class of metacyclic p-groups. All
these groups, and also groups of square-free order, were shown to have
deficiency zero by B. H. Neumann [31]. This work has now been extended
(using Wall's resolution [37] and the Lyndon-Hochschild-Serre spectral
sequence [18] respectively) by J. W. Wamsley [39] and F. R. Beyl [2],
who solved independently the efficiency problem for metacyclic groups;
we paraphrase the latter version below. ’

A typical finite metacyclic group has the form

m -1 r
G=(x, y[x"=1, yxy=x, y"=x°), (3)

where =1 (mod m) (since yrl commutes with x), and s = A\m/(m, r-1
for some integer X # 0 (since y commutes with xs). The first condition

ensures that if

hm = (m, r-1)(m, 1 +r+ ... + rn_l)

b

then h is an integer, and Beyl's first point is that the isomorphism class
of G is not affected if we replace X by (h, A). His main result asserts
that this number is the order of M(G), and it only remains to find two
relations that define G in the case when s = m/(m, r-1). This is done
very prettily as follows.

Let (m, r-1) = u(r-1) + vm, so that u is prime to s = m/(m, r-1).

If ¢ is the greatest factor of m prime to u, and t=u + Is, then

(m, r-1) =t(r-1) (mod m), and (m, t)=1. 4)
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Since

v, x5 = ¢ byt = LDt (m,r-1) ,

the following relations hold in G:
- -1
Y =, [y, x =T, (5)

To see that these define G, note first that they imply that x° commutes

with y, and [y, x_t] commutes with x. Hence,

t

t s
xS x) =][y, X

-t -t.s ts
] I'x

-1 ts -1t
=y 'xy = 'xy)® = (y, x

)

that is, [y, x_t]S =1, Together with (5), this yields x™ =1. Now by
(4), there is an integer k with kt =1 (mod m), and we have

Iy, x_l]:[y, x_kt]z([y, x_t]xt)kx_ktz Iy, X—t]k=xk(m,r—l)zxkt(r—l):Xr-l’

showing that the original relations all follow from (5).

§3. Three-generator groups

The first examples of interesting groups needing three generators
were provided by J. Mennicke [29] in 1959, who showed that the groups

M, b, ©) =(x, v, z|y 'xy = x, 27 lyz = y°, x 'zx = 2%)

are finite in the case a =b =c¢ = 3. These groups have also been investi-
gated by I. D. Macdonald and by J. W. Wamsley (see [38] for a detailed
treatment). They are finite whenever |a|, |b|, |c| = 3, and 3-generated
provided a-1, b-1, ¢ -1 have a common prime factor. We demonstrat
below that they are finite and soluble, assuming for convenience that
a, b, ¢ are all at least 3.

First note that the defining relations imply that

u
y—uxvyu — XV& , (6)

for any integers u, v with u = 0, together with two cyclic permutants.
The Witt identity
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[x, ¥, 2%z, %, ¥y, 2, ©]=1

thus yields the relation

ab—a b%-b ¢ _
X y Z =1

’

so that

b c b c
2 —a.yb -b _ z_l(xa -ayb —b)Z

ab-a. (X—(ab-a)zxab-a)—l ( bc-b)z

=X Z.y

b
a -a
=X

c
. (power of z).yb(b 'b),

c
(b-1)(b"-b) is a power of z, and thus, so is

1 2,c-1
-1) (conjugating by z_l), whence y(b_l) b 7-1) _ 4 (con-

using (6). It follows that y
c_
b-1)(b
y( )

jugating by 2z). Similarly, x and z have finite order, and since the
defining relations may be used to collect powers of x, y, z in an arbi-

trary word, we have that
M2, b, o)| = @D @ - 1)b-1° B 1)e-1)7 (1),

Turning to the question of solubility, note first that G' is the normal
closure of xa_l, yb_l, 2%, Since for example, yb_1 commutes with y,
is conjugated by z to a power of itself, and

-1_b-1 b-1 1-a°7! b-1 _a-1.

X'y X=y °X ey T, x ),

it follows that G' is actually generated by these three elements. Similarly

c-1
G" is the normal closure in G' of [yb_l, zc_l] =y(b_1)(b -1

(-1 1-1)

and two

similar elements, and since y is a power of z (see above),
G" is actually generated by these elements and is abelian. This shows
that the derived series of G has length at most three and that its factors
are all 3-generated; in particular, the Mennicke groups are all soluble.
Similar arguments are used to show that two further classes of

groups (Wamsley [38], [40])
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-1
V4 a _Z b ¢
Wl(a, b, ¢)=(x, v, z|x" =x, y =y, z =[x vy,

Z a z b ¢
Wz(a’ b, C):<X, Yy, ZIX =X,y =Y,z :[X’ Y]>
are also finite and soluble, provided (a - 1)(b - 1)c # 0.

Finally, consider the groups

-1 bt+4 =z c-1c¢ctd x a-1 at4
y L,y =zy =z z =x2z x )

I, b, )=(x, y, 2|’ =y"x , 2z =

)

where a, b, ¢ are even integers distinct from -2, It turns out that the
subgroup (xz, y2, z2> is finite, abelian and normal, with quotient group
elementary abelian of order 8, The J(a, b, ¢) are investigated in [22]
and [44], and complete the list of known interesting groups that need three

or more generators (but see §8).

§4. Nilpotent groups

The nilpotent case is a particularly propitious one from our point of
view; the multiplicator of a nilpotent group is trivial if and only if the
same is true of all its Sylow subgroups, and the theory of p-groups is
relatively well-developed. For example, the Golod-Shafarevich theorem
(see [16] and [21]) asserts that if a finite p-group G needs d generators,
then M(G) needs at least [d2/4] + 1, and we deduce that all interesting
nilpotent groups are at most 3-generated. Theorem 9 of [24] contains the
stronger assertion that if G is any interesting group, then G/G' is at
most 3-generated. Other useful properties of interesting p-groups are to
be found in [20], [25], [43], for example.

Several of the groups already mentioned are nilpotent. The nil-
potent centro-polyhedral groups are precisely the derivatives of (2n, 2, 2),
while the metacyclic group (3) is nilpotent if and only if r - 1 involves all
the prime factors of m, Criteria for the nilpotency of M(a, b, ¢) are
harder to find, but we know that M(3, 3, 3) is a 2-group and M(-2, -2, -2)
is a 3-group, and that exactly four of Wamsley's groups W1’ W2 have
prime-power order. Thus we have examples of interesting p-groups of
arbitrary class for all primes p, though in all cases the central factors

are at most 3-generated.
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The groups

a y,X] =yb>

Mac(a, b) =(x, YIX[X’Y] =X, Y[

a, b # 1, were introduced in 1962 by I. D. Macdonald [27], who showed
them to be nilpotent of class at most 8. The largest known nilpotency
class for these groups is 7, which occurs in Mac(34, 7) [28]. Mac(a, b)
has order dividing 27(a-1)(b-1)(a-1, b-1)8, and is the group Wl(a, b, 1)
of §3. By the above remarks, the Sylow p-subgroups of Macdonald groups
also have trivial multiplicator, and are interesting (that is, efficient) in
all cases, except possibly when p =2 [45].

All groups of order 2" and 3" are known to be efficient for n =<6
([26], [32], [43]). The even case yields just one non-metacyclic interesting
group, namely group number 240 in [17], with presentation Wq(—3, 4, 2)
given below, while in the odd case, we obtain the four groups A6(221)a,
A6(321)a1, A6(321)a2, A6(221)c in the nomenclature of [19]. The first
three of these are isomorphic to Mac(a, b), with (a, b) = (-2, 4),
(-8, 4), (-8, -2), respectively, Apart from the 2-generator 2-relation
group M given in the next paragraph, and some groups in §7, this com-

pletes the list of known interesting nilpotent groups.

§5. Cyclically presented groups

A group is called cyclically presented if it has a presentation on
generators Xip eees X with n relations obtained from a single word w
in the X by permuting the subscripts modulo n via the powers of the
permutation 6 = (1 2... n). The resulting group, denoted by Gn(w), has
non-negative deficiency, and thus is interesting whenever it is finite.
Examples are the groups (2, 2, 2) = G, (x x x x_1) of §1, M(a, a, a),

J(a, 2, a) of §3, Mac(a, 2) of $4 and G1L(22,13)2=G3(x1x2x3x;1). The
split extension En(w) of Gn(w) by Zn, with action induced by 9, is a
2-generator group of non-negative deficiency. The result of applying this
to Q8 =G3(xlx2x;1) gives (2, 3, 3), while applying it to M(-2, -2, -2)
gives the nilpotent group M mentioned at the end of §4.

The special case w=x_ ... er;il (subscripts modulo n) yields

L
the Fibonacci group F(r, n) of [24], though small cancellation arguments
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[13] show that these are often infinite. All of those known to be finite are
in fact metacyclic, with the notable exception of the group F(3, 6) of
order 1512 [7] which is soluble of class 4, the factors of the derived
series having ranks 2, 1, 2 and 1 (in descending order). A group with
similar presentation and the same order as E‘(B, 6) is Gb(xlx3x5x;1)
[8] which is soluble of class 3, the factors of the derived series having
ranks 1, 2 and 1. Another soluble group of class 4 is GB(X1x3x1x2x;1)
which has order 2°. 32. 72. As with 15‘(3, 6) extending this last-mentioned
group by the cyclic permutation automorphism does not increase the
derived length.

The finite Gn(w) have been determined for all w of length 3 and
n = 6 [23], and all but one appear in the preceding sections. The excep-
tion is the group S(2) of order 56, where S(n) = Gz(xnyxyn+l). These
groups are investigated in [35], where they are shown to be finite and
metabelian. Since S(n) = S(-n - 3), we assume n = -1, and consider
x 'x x_..). It turns out that

o1 2n+3( 1 "2 nt4
H(n)'= G2n+3(x1 X2Xn+4)' H(n)'/H(n)" is finite and at most 3-generated,

the group H(n) = E
and H(n)/H(n)" = S(n), which is thus an interesting metabelian group.

86. Soluble 2-generator groups

Two classes of interesting soluble groups were presented by
Wamsley ([41] and [44]) who showed that the groups

-1
Ws(a, b, ¢) ={x, y|xy = xayb, x_lybx= be>

are finite if a, ¢ > 1, and that the 2-generator groups

a 2 b c
W@ b e)=(xy, z[x" =x", y' =x2", z=[x y]D
are finite if |a] #1 and ¢ = 0.
The groups WB(a, b, ¢) are metabelian, their derived groups being

2-generated. We give a proof of these properties. Clearly the derived
a-1b b(e-1)

group of WB(a, b, ¢) is the normal closure of x "y and y , SO
it suffices to prove that
a-1 b _b(e-1
S AT A T 7
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a-lyb, yb(c-1)> is normal.

b 1.1)

and that (x

It is easy to see that y =1 so

a-1
-(a-1) b a-1 c b b
x @bl _y =y
and (7) follows.
To complete the proof notice that

(Xa—lyb)x _ Xa.-lybc _ (Xa-lyb)(yb(c-l))

and
-1
-1 b b,a-1 b
)Y =Py Yy
2
-1)2, ba-1b
= x@ 1) P21y

a-1
Xa(a—l)yb(1+c+, Lo+ )

_ (Xa—lyb)a(yb(c-l))t

where t=(1+c+... + ca_1 -a)/(c - 1).
A similar argument shows that Wq(a, b, c) is soluble of derived
(a-1)2

length at most 3, W4(a, b, ¢)" is cyclic with generator x while

W4(a, b, c)'/W4(a, b, ¢)" is generated by xa’_1 and z. The group
W4(-3, 4, 2), commented on in §4, has derived group abelian of rank 2,
However, we have been unable to determine whether examples exist with
Wq(a, b, ¢)" non-trivial.

Further interesting classes of groups are given by Campbell and

Robertson in [11]. These are the classes

_ -1 - +1

T(a) =(x, ylxy’x 'yx’y ™' =1, m*  =y%"),
2 2 a+l 2.2

T@) ={(x, y/xy'xyxy =1, xy"  =yx"),

and

-1 -1 -1
X(@) = (x, y|xy’xyx’y =1, xyxy ¥ =yx lyxy 'x) .
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If (a, 6)=1, T(a) and T(a) are metacyclic. However, when
(a, 6) # 1 T(a) and T(a) have derived length 3 and it turns out that
T(a)/T(a)' and T()" are cyclic while T(a)'/T(a)" has rank 2. Pro-
vided that a # 1 X(a) has derived length 3 and the derived factors are
similar to those of T(a). These three classes are related as follows:
T(a.)/Z2 ~ T(a) and T(2a) is a subgroup of index 2n + 3 in X(a). The
cyclically presented group G6(xlx3x5x;1), discussed in 85, is isomor-
phic to X(2)/Z2.

§7. Further 2-generator classes
The presentation
2 3 2 3
(x, ylxy* =y’%, yx" =x"y)

for the trivial group given by Fox (see Coxeter and Moser, [14]), has
given rise to several generalisations [1], [9] and [33]. The interesting
groups discussed in these three papers are metacyclic. Less obviously
the Fox presentation inspired the definition of the first class we study in

this section:
b a-1 ¢ b -1l ¢
Ga, b, ¢) =(x, ylxy =y x'yx, yx =x" vy xy)

which is studied in [4] by C. M. Campbell (see also [3] and [6]). Several
subclasses of G(a, b, c) give rise to finite groups. In particular we
note that the groups G(3 - 41, 5, 4x - 2) are finite nilpotent groups of
order 2117\. These groups have nilpotency class 6 and derived length 3.
Another subclass, G(1 - a, b + 1, a), where a =1 (mod b), has a central
Z2a+b with factor the centro-polyhedral group (-2, 3 |b> discussed in §1.
Of the interesting groups known to be contained in Gf(a, b, c), the
most remarkable is G(2, 3, -2) discussed by Campbell in [4]. This
group is an extension of PSL(2, 8) by Z}. It is the only interesting
group known to have a non-abelian composition factor other than A5 (but
see §8).
Among the Gf(a, b, ¢) which contain A5 as a composition factor
are G(-1, -1, -1), G(3, 3, 1) and G(-2, -2, 1) which are SL(2, 5).
So are G(0, 3, -2) which is SL(2, 5) X Zs’ and G(-1, -1, 4) which is
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an extension of a group of order 27 by As' This last-mentioned group
has G" = SL(2, 5). These examples and also some soluble G(a, b, c)
are discussed in [4] and [6]. This class contains examples of finite
soluble groups of deficiency zero having Sylow subgroups with non-trivial
multiplicator; in particular the metabelian group G(2, -3, 2) has its
Sylow 2-subgroup as its derived group and this subgroup, of order 26,
has non-trivial multiplicator.

The second of the classes we discuss in this section is

a,b,c

2 2:yh(a+b+c): . b 5C).

F ={(x, y’x

which generalises a presentation suggested by H. S. M. Coxeter. The

special cases of F| 2,0,¢ ond Fz"b’ ¢ were studied in [5] and [10] res-

pectively (see also [12]). Put n=a+b+c and d= (a-b, b-c, An).

Fi’b’c is infinite if n = 0 and since F 3,b, cNF a,-b, -¢ we can

assume that n> 0, We also assume that (a, b, c) =1. The derived
a,b,c

series of F ’ 7’ ~ has factors Z
a,b,c A (A+2)n a
by K and G The abelian group K ’ is isomorphic to

d
Ka b, e if X is even and to Ka ¢ 4t a s odd, Ka’b ¢ being the
max1mal elementary abelian 2- factor of Ka b, c

A property worthy of note here is that the rank of the derived factor

Ki”b’ ¢ is unbounded. More explicitly, it is shown in [12] that given any

k=1 there exists an integer m=2"'* - k- 2 such that K2*™ has

and groups which we shall denote
b, c

rank k + 1. As noted in §4, interesting groups have G/G' 3- generated.
These examples show that there is no bound on the rank of G'/G". How-
ever, there is no known example with two or more derived factors of
rank > 3,

For d =6 G, is infinite and so in this case Fi’

d
esting. If d =1 the groups Fi”b’ € have been proved to be finite and

b,c . .
>~ is not inter-

metabelian, so G1 = 1. For the cases d =2, 3, 4, 5 there is only an
unproved conjecture giving the structure of Gd’ but proofs exist for
infinitely many examples of each value of d; G2 =1, G3 = Zz’ G4 = Qs
and G_= SL(2, 5) for these known examples. In particular

Fl’ R GL(2, 3) while FZ’ 7% g the unimodular group modulo 5,
Other identifications of groups in the class Fa b, ¢ with centro-polyhedral

groups are discussed in [5],
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In common with all the other interesting groups discussed in this

?mcis4(Mwnd=4)wd

whenever A5 is a composition factor it is a homomorphic image and

survey, the maximal derived length of F
SL(2, 5) is a normal subgroup (when d = 5),

§8. Conclusion

The results presented in this survey suggest that answers to the
following three questions would give considerable insight into the structure

of finite groups of deficiency zero.

Question 1. Are the central factors of a finite nilpotent group of deficiency

zero 3-generated?

Question 2. Is there a bound on the maximum derived length of a finite

soluble group of deficiency zero?
Question 3. Which non-abelian simple groups can occur as composition

factors of finite groups of deficiency zero?

Added in proof:
1. It has recently been shown that for odd primes p, the SL(2)

have deficiency zero, as also does the simple group of order 504
(C. M. Campbell and E. F, Robertson, to appear in Bull. London Math.

Soc. ).

2. The Mennicke groups have been generalized to yield further 3-
generator interesting groups by M. J. Post (Comm. in Alg. 6 (1978),
1289-96),
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17 - Aquivalenzklassen von Gruppenbeschreibungen,
Identitaten und einfacher Homotopietyp in
niederen Dimensionen

WOLFGANG METZLER

University of Frankfurt
1, EINLEITUNG

(a) niederdimensionale Polyeder und Gruppenbeschreibungen

Unter einer endlichen Beschreibung
1 ¥ = la ;.. angl(ai), ceey Rh(ai)}

einer Gruppe 7 durchdie Erzeugenden a; und die definierenden Relatio-
nen Rj verstehen wir, dass 7 isomorph zu F(ai)/N(R.) ist, wobei F(ai)
eine von den 2y frei erzeugte (freie) Gruppe ist und N(Rj) c F(a.l) der
kleinste Normalteiler, der die Rj enthdlt. Die Folge der R]. darf dabei
auch Wiederholungen enthalten, N(Rj) bleibt ungedndert, wenn auf die

Rj eine endliche Folge der Elementaroperationen

(A) R. »wR, w ! fir ein j, und einWort w inden a,
0 0
(Konjugation; die Ubrigen Rj bleiben erhalten),

(B) freie Transformationen unter den Rj

angewandt wird. Eine solche Folge heisst nach Rapaport [13] Q-Transfor-

mation der Beschreibung (1). Sind als Flementaroperationen zusatzlich

(C) freie Transformationen unter den Erzeugenden

von F(ai) zugelassen, d.h. in den Relationen werden die 2, durch freie

Transformierte ersetzt, so sprechen wir von Q*-Transformationen. Fur

Q**-Transformationen lassen wir ferner zu, dass

(D) eine neue Erzeugende a und eine neue Relation R = a einge-

flihrt werden (Verlidngern),
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und, falls moglich, der inverse Prozess (D)_1 vorgenommen werden
darf. Zwei Beschreibungen einer Gruppe 7 (bzw. isomorpher Gruppen
7, 7'), die durch eine Q**-Transformation auseinander hervorgehen,
mdgen Q** —Aquivalent heissen. Die Aquivalenzklasse von ¥ = {ai[ Rj }
bezeichnen wir mit ¢(*p) = ¢(ai| Rj)'

Aquivalente Gruppenbeschreibungen ¥ und P ' konnen stets durch
eine solche Q**-Transformation ineinander Uberflihrt werden, bei welcher

die Elementaroperationen in der Reihenfolge

« (A), (B)-Schritte

(D)-Schritte .
»> B » P

ein (C)-Schritt

@ % B,

-1 .
(D) ~ Schritte B
ausgefiihrt werden, d.h. P und ' werden nach geeignetem
Verlingern Q*-Aquivalent bzw. mit einer zusétzlichen

Erzeugendentransformation sogar Q-aquivalent.

Ist m =1 die triviale Gruppe, so ergibt sich, dass die (C)-Schritte durch
solche vom Typ (A), (B), (D)i1 ersetzt werden(l) konnen. B und B

sind dann nach geeignetem Verlingern sogar Q-dquivalent:

-1
D)-Schritte A), (B)-Schritte , (D) ~Schritte ,
(3) i13( ) 7“‘31 ( ),( ) 1 =‘B1 ( ) #ZB .

Einer endlichen Gruppenbeschreibung (1) kann man bekanntlich ein zu-
sammenhingendes, kompaktes Polyeder K der Dimension =< 2 mit

m (K) = m zuordnen, bei dem die Relationen 2-Zellen bestimmen, die
gemass Rj in eine Rosette aus g Schlaufen geklebt sind. Umgekehrt
bestimmt jedes zusammenhingende, kompakte Polyeder K der Dimension
= 2 eine Aquivalenzklasse von Gruppenbeschreibungen, nimlich iiber die
Ablesungen seiner Fundamentalgruppe bezliglich semilinearer Zellaufteilun

gen. Diese K zugeordnete Klasse werde mit ¢(K) bezeichnet.

(1) Eine freie Erzeugendentransformation lisst sich immer aus (A), (B)-
Schritten und dem Prozess des erweiterten Verlingerns (und seinem In-
versen) gewinnen, bei dem eine neue Erzeugende a und eine neue Re-
lation R = w-la filir ein Wort w in den alten a, eingefiihrt werden
dirfen, Im Falle 7 =1 ist w(aj) ein Konjugie%tenprodukt der alten
Relationen, das erweiterte Verldngern also in einen (D)-Schritt und (A),
(B)-Schritte aufldsbar, vergl. Wright [19], S. 168 f.
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Perrin Wright hat in [19] die Aquivalenzklassen von Gruppenbe-
schreibungen mit dem einfachen Homotopietyp durch folgenden Satz in

Beziehung gebracht:

(4)  ¢(K) = ¢(L) gilt genau dann, wenn K, L durch formale p. 1. -
Deformationen ineinander iberfiihrt werden kbnnen, bei denen

nur Erweiterungen der Dimensionen = 3 auftreten.

Die Zuordnung K = ¢(K) vermittelt also eine 1 :1 Beziehung zwischen

den Klassen des durch diese Dimensionsbedingung eingeschrinkten ein-

fachen Homotopietyps bei zusammenhdngenden, kompakten Polyedern der

(2)

Dim = 2 und den Aquivalenzklassen von Gruppenbeschreibungen.
Durch (4) lassen sich geometrisc'he Fragen in algebraische lber-

setzen und umgekehrt. Zum Beispiel haben Andrews und Curtis in [1] die

Frage gestellt, ob fiir zwei Beschreibungen P = {al, ceey ag; R1" .. ,Rg}

und P' = {a'l, cee aé,; R'l, ceey Ré, } der trivialen Gruppe stets

¢(P) = ¢(P') gilt, ob also nur die triviale Klasse ¢0 vorkommt, die etwa

durch eine triviale Beschreibung ¥ = fa , ..., agJ R =a,...,R,=a,]

1 g 8
reprisentiert wird. Die Andrews-Curtis Vermutung, dass dies zutrifft,

ist nach (4) Aquivalent dazu, ob bei kompakten, zZusammenziehbaren Poly-
edern der Dimension = 2 nur die Klasse des eingeschrankten einfachen
Homotopietyps vorkommt, die durch kollabierbare K (etwa einen Punkt)
gegeben ist.

Die Frage von Wall [17], ob der eingeschrinkte einfache Homoto-
pietyp eine echte begriffliche Einschrinkung ist (s.u. 10), lautet nach (4)
umgekehrt, ob aus KL stets ¢(K) = ¢(L) folgt.

Es sei noch auf zwei weitere Sachverhalte hingewiesen, die sich mit

(4) begrunden lassen, und welche die vorliegende Arbeit motiviert haben:

I Einer geschlossenen, zusammenhingenden 3-dimensionalen Mannig-
faltigkeit M’ kann man folgendermassen eine Beschreibungsklasse ¢(M3)

zuordnen: Man entferne aus M das Innere einer semilinearen Vollkugel

(2) Der Satz von P, Wright lasst sich auch auf CW-Komplexe K aus-
dehnen. Ausserdem ergibt sich, dass ¢(K) eine topologische Invariante
ist, obwohl bei 2-dim. CW-Komplexen die 'Hauptvermutung' bereits
falsch ist. Da die Beweise technische Komplikationen enthalten und wir
diese Tatsachen im folgenden nicht bendtigen, begniligen wir uns mit dem
Hinweis darauf, s. auch Fussnote 10.
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D’ - etwa ein offenes 3-Simplex einer Triangulierung - und kollabiere

den Rest, bis ein Polyeder K der Dimension = 2 ibriggeblieben ist.
(5) ¢(M3) werde als ¢(K) definiert.

¢(M3) ist gut definiert, denn wegen des Zusammenhangs von M ist es
gleichgiiltig, welche Vollkugel gewdhlt wurde, und zwei verschiedene
Kollabierungen M - QB\K, M - 93\L erweisen K und L als zum
gleichen eingeschrankten einfachen Homotopietyp gehdrig. Nach (4) gilt
also ¢(K) = ¢(L). Es gilt sogar, dass

(6) ¢(M3) eine topologische Invariante von M’ ist,

weil fir M’ die Hauptvermutung gilt.

Sollte es daher moglich sein, Gegenbeispiele gegen die Andrews-
Curtis Vermutung zu erhalten, was ich glaube (s. u. (9)), so entsteht die
dusserst wichtige Frage, ob sich geeignete Reprisentanten einer solchen
nichttrivialen Klasse auf dreidimensionalen Mannigfaltigkeiten realisieren
lassen. Wenn ja, ware die 3-dim. Poincaré-Vermutung widerlegt. Uber-
haupt halte ich es fur eine lohnende Frage, zu untersuchen, welche Be-
schreibungsklassen sich auf 3-Mannigfaltigkeiten (auch solchen mit Rand)
realisieren lassen; dieses Problem steht 'zwischen' dem der Realisier-
barkeit eines einzelnen Polyeders K’ (s. z.B. Neuwirth [8]) und der
Frage, ob eine gegebene Gruppe 7 als m (Ms) auftritt. Lohnend
erscheint die Frage ausser wegen (6) auch deshalb, weil eine Beschreibungs
klasse ¢ nicht nur die Gbliche Homologie von Gruppen, sondern einen

einfachen Homotopietyp besitzt.

1I. Gegenbeispiele gegen die Andrews-Curtis Vermutung wirden ferner

die Vermutung von Zeeman {20] widerlegen, dass fur ein kompaktes,

zusammenziehbares Polyeder K der Dimension =< 2 K X I kollabiert;

denn mit B=1 und L = {0} istes ein Spezialfall von:

(7)  Gegeben seien K, L (kompakte, zusammenhingende Polyeder
der Dimension = 2) und ein endlicher Baum B derart, dass
K X B nach L kollabiert. Dann gilt ¢(K) = ¢(L).
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Dies folgt nimlich nach (4) aus K K X B~ L., Auch hier treten inter-
essante Fragen auf, z. B., wann aus ¢(K) = ¢(L.) umgekehrt die Existenz
eines Baumes B mit K X B~ L folgt. Wenn fur die triviale Klasse

¢, zu 7=1 mit B=T etwa KX 10 gilt, ware nach Zeeman [20]
und (6) eine Homotopiesphire =’ der Dimension 3 genau dann SB, wenn
¢>(23) die triviale Klasse ist.

Beschreibungsklassen ¢, ¥ von 7 resp. 7' kann man addieren,
indem man Repridsentanten {ail Rj 1, {3’1'(’ R; } mit durchschnitts-
fremden F(ai), F(al'{) wahlt und die zu 7 * 7' gehdrige Klasse von
{ai, a.l'(le, Ri} bildet. Wenn dabei ¢ zu der geschlossenen, zu-
sammenhingenden 3-Mannigfaltigkeit M und { analog zu N gehort,

gilt
(8) ¢ + ¢ ist die Klasse der zusammenhangenden Summe M # N,

Fur die abelsche Halbgruppe JC der Beschreibungsklassen mit qbo als

neutralem Element dringen sich wiederum etliche Fragen auf: a) Gibt

es - analog zur zusammenhingenden Summe bei 3-Mannigfaltigkeiten -
eine Prim,faktor"zerlegung? pB) Gilt eine Kirzungsregel? Fur die
Unterhalbgruppe ¥* der Klassen zu 7 =1, die durch zusammenzieh-
bare Komplexe (d.h. bei (1) : g = h) bestimmt ist: ) Gibt es Inverse ?
8) Gibt es Elemente endlicher bzw. unendlicher Ordnung? Ferner kann

man zu JC oder einer Teilhalbgruppe ' C ¥ eine Gruppe konstruieren,

indem man Klassen aus Paaren (¢, y) bildet mit (¢, ¥) = (¢', ¥'), wenn
o +y'+A=¢"+yY + A flir ein geeignetes A gilt. Dije Klassen werden
komponentenweise‘ addiert. Wenn in X' keine Kirzungsregel gilt,
bestimmt ¢ = (¢, ¢0) (bzw. ¢ = (¢ + ¥, ) fir ¢0 £ 3¢') allerdings keine
E inbettung.

Vergleiche zu II. auch die Punkte b), c) und d) des Anhangs!

Aufgrund der bisherigen Erdrterung ergibt sich die Aufgabe,
Kriterien fiir die Aquivalenz von Gruppenbeschreibungen zu entwickeln.
Bei isomorphen Fundamentalgruppen und gleicher Eulerscher Charakter-
istik sind verschiedene Homotopietypen zusammenhdngender, kompakter
Polyeder der Dim. = 2 mboglich, also erst recht: nichtiquivalente

Gruppenbeschreibungen mit gleichem Wert h - g, s. [7]. Daher missen
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feinere Hilfsmittel herangezogen werden.

(b)  Inhaltsiibersicht der folgenden Paragraphen

Im zweiten Abschnitt erhalten wir solche Hilfsmittel durch den

Klassifikationssatz

Satz 1. Zwei Gruppenbeschreibungen sind genau dann fquivalent,

wenn sie nach geeignetem Verlingern durch einen Morphismus (s. (16))

ineinander abgebildet werden kdnnen, der sowohl a) eine Homotopie-

dquivalenz K =K' zugeordneter Polyeder als auch b) einen Isomorphismus

der Peifferschen Identititengruppen induziert.

Die Identitaten einer Gruppenbeschreibung, insbesondere die
Peifferschen Elemente unter ihnen, wurden von R. Peiffer [12] zur
algebraischen Beschreibung 3-dimensionaler Komplexe verwendet.
Wihrend in [12] die Peifferschen Elemente jedoch spiter wieder
"herausgekilirzt" werden, um den Homotopiekettenring zu erhalten, spielt
der Satz von Reidemeister [14] {iber sie zusammen mit einem Ergebnis
von Rapaport ([13], Satz 1) die Hauptrolle im Beweis von Satz 1 und
erweist somit die Reidemeister-Peiffersche Theorie der Identititen als
"Eckstein" fiir die vorliegende Untersuchung der Aquivalenz von Gruppen-
beschreibungen. Da Hz(k) isomorph zum Quotienten der Identititen-
gruppe nach dem von den Peifferschen Elementen erzeugten Normalteiler
ist (s. (15)), kann man die Identititengruppe als eine Art nichtabelscl(le)

3

zweite Homologiegruppe der universellen ﬁberlagerung IN( ansehen.

Ideen zur Auswertung der Klassifikation, die durch die Identititen-
theorie gegeben ist, sind im 3. Abschnitt zusammengestellt. Darunter
befinden sich notwendige und hinreichende Tests, die das Hochheben von
Isomorphismen betreffen. Sie lassen sich zu notwendigen Modul und

Matrizenkriterien abschwichen, von denen eines fir den Spezialfall der

(3) Vielleicht lohnt es sich auch, Identititen etwa bei den Wallschen
Endlichkeitsbedingungen heranzuziehen [18], wo die Dimension 2 eine
Sonderrolle spielt, oder bei der Frage (s. Cohen [3], S. 81), ob end-
liche CW-Komplexe der Dimension 2 vom gleichen Homotopietyp auch
stets denselben einfachen Homotopietyp haben.
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trivialen Gruppe bereits beschrieben sei:

(9) Es existiert ein Gegenbeispiel gegen die Andrews-Curtis
Vermutung, wenn gewisse aus Foxschen Ableitungen gebildete
Matrizen auch dann noch nichtinvertierbar bleiben, wenn sie
um beliebige Elemente aus einem Ideal von Matrizen additiv
modifiziert werden dirfen, welches von den Peifferschen

Elementen herrihrt (Satz 5).

Die dadurch gegebene reichhaltige algebraische Situation ist solchen der
algebraischen K-Theorie verwandt und der Grund daflir, warum ich glaube,
dass die Andrews-Curtis Vermutung nicht zutrifft,

Die effektive Auswertung der Tests dieses Abschnitts ist das Ziel
weiterer Untersuchungen, die sich an diese Arbeit anschliessen sollen.
H. Ower und R, Zirpel danke ich fiir ihre bisherige Milhe, Teilprobleme

davon in ein Maschinenprogramm zu lbersetzen. Den Leser bitte ich um

Mitteilung von Ideen, die den in diesem Paragraph gegebenen "Werk-
statteinblick" betreffen. ‘

Der 4. Abschnitt Gbertrigt die Ergebnisse auf relative einfache
Homotopiedquivalenzen bzw. Gruppenbeschreibungen mit Operatoren.
Dass dabei nicht nur notwendige Kriterien, sondern ebenfalls Klassifi-

kationen entstehen (Satz 1la), gelingt aufgrund eines relativen Nielsenschen

Satzes (Satz 7) Gber Operatorbasen und -automorphismen von freien
Gruppen mit gewissen Operatorgruppen, dessen Beweis kiirzlich unab-
hingig von dieser Arbeit auch von W. Browning [2] geflihrt wurde. Der
schon erwahnte Satz von Rapaport [13] ist ein Spezialfall davon. Ferner
hat dieser Satz {iber relative Nielsentransformationen zur Folge, dass die
Frage von Wall [17]:

(10) "f: K==K' sei eine einfache Homotopiedquivalenz zwischen
zusammenhingenden CW-Komplexen. Dabei sei L ein ge-
meinsamer Teilkomplex, der unter f punktweise fest bleibt.
K- L und K'- L seien endlich mit n=max (dimK - L,

K'- L) =2, Istdann f homotop rel. L zu einer formalen

Deformation g : K =K', bei der hochstens n + 1 - dimension-

ale Erweiterungen nétig sind?"

297



fir n =<1 und zusammenhingende L positiv entschieden ist. Die
Voraussetzungen konnen sogar noch abgeschwicht werden (Satz 8), Fir
n = 2 rechne ich wegen der von m (L) herrthrenden Operatorstruktur
im relativen Fall dagegen noch stirker mit Beispielen, bei denen 3-
dimensionale Erweiterungen nicht ausreichen, als im absoluten (s.u. (45)).

Ausserdem wird im 4. Abschnitt mittels Identititen ein Test fur das
Wh*-Problem (Cohen [4], Metzler [7]) angegeben, welche Elemente aus
Wh(m) sich durch 2-dimensionale Erweiterungen realisieren lassen.

Uver einige weitere Ergebnisse, die mit der Thematik dieser
Arbeit zusammenhingen, wird Uberblicksartig im Anhang referiert.

R. C. Lyndon und M. M. Cohen danke ich fir wertvolle Gesprache

bei der Vorbereitung dieser Arbeit und die Ermutigung, sie niederzu-
schreiben, obwohl z. B. der 3. Abschnitt den Wunsch nach weiteren
Resultaten weckt. Obgleich die Ergebnisse nicht plagiiert sind, danke ich
insbesondere fir ein Gesprachsklima, bei dem Freude {iber die Arbeit
an den sich offenbarenden Zusammenhingen und nicht Sorge um Prioritit
bei den Resultaten bestimmend war.

Wie mir wahrend der Niederschrift des Manuskriptes bekannt wurde,
hat R. Craggs [5] eine Arbeit fiber verwandte Fragen vorbereitet. Auf

sie mochte ich abschliessend hinweisen,

2. IDENTITATEN

Einer endlichen Gruppenbeschreibung ¥ = {al, cees agl
R1(ai)’ cees Rh(ai) ] ordnen wir die folgenden zusiitzlichen Daten zu:
Wir bilden die freie Gruppe H 2 F(?.i) mit den freien Erzeugenden
al, ceey By Toy eau, Ty und erklaren einen Homomorphismus
p:H=- F(ai) durch p(ai) = a,, p(rj) = Rj' Das p-Bild eines Elementes
x € H bezeichnen wir gemiss Reidemeister [14] auch als X. In H
erzeugen die r. einen Normalteiler H*, der unter p nach N(RJ.) abge-

bildet wird. Der Kern von p fH* werde als Identitdtengruppe I bezeichnet.

Sie beschreibt die Abhangigkeiten zwischen den Relationen R j : zwel
"formal verschiedene" Konjugiertenprodukte in den Rj’ die dasselbe
Element von N(RJ.) darstellen, stammen von verschiedenen Elementen

aus H*, deren Quotient inI liegt - und umgekehrt. Die Identitdten der
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-1 « =1.-1 - . s
Form (r, s)=r.s.r ~.rs r = fur r, s aus H* heissen Peiffersche

Elemente; der von ihnen in H erzeugte Normalteiler P ist die

Peiffersche Gruppe. Insgesamt haben wir die Reihe H 2 H* 212 P von

H-Normalteilern erhalten.
Mit der Geometrie des P zugeordneten Komplexes K der Dimen-
sion =2 stehen diese Daten in folgender Beziehung: Es existiert das

kommutative Diagramm

11) Hf——L —» c,[®)

e Y
N(Rj) — C1 (K) ,
wobei auf der rechten Seite die Kettengruppen und der Randoperator der
universellen Uberlagerung K stehen, p* stimmt mit p bis auf den

Argument - und ggf. Bildbereich tberein, e ist durch die Foxschen

Ableitungen (mit Werten im Gruppenring Z(ﬂ1 (K))) gegeben und erfiillt

(12) Kern(e) = [N®R,), N®))] = p™)((ars, 1),

€
f ordnet einem Produkt Hw, (a,)r,“w (a,)" mit e =1 die Summe
Kk ki Jk ki k
2 o . L . .
1E(jekgk(ejk) zu, wobei die g, die nach m projezierten Wy sind und die

&2 einen Fundamentalbereich von 2-Zellen in K bilden,

J
Nach Reidemeister [14] gilt:

(a) f ist epi mit Kern N([H*, H*]-U P)
(13)
(b) InN(H* H*]UP)=P.

Ein Element von I wird unter f wegen der Kommutativitit des Diagramms
(11) in einen 2-Zyklus abgebildet,

(14) Jeder 2-Zyklus ist aber auch in f(I) enthalten,

denn flir z € C2(I~{) mit 2(z) = 0 gibt es nach (13a) ein x € H* mit
f(x) = z. Aus ep(*)(x) = 3f(x) = 9z = 0 folgt dann wegen (12):
p(x) € p((H*, H*]). x ist also von einem geeigneten k € [H*, H*] um

eine Identitdt i € I verschieden: x =k-i. Unter f wird k wegen (13a)
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nach 0 abgebildet, so dass wir

4)

z = f(x) = f(k- i) = £(i) erhalten( , g.e.d.

Weil I unter f auf HZ(IN{) abgebildet wird und dabei nach (13a, b) der
Kern P auftritt, gilt:

(15) f induziert einen Isomorphismus 1/P -»Hz(f{).

sind ¥ ={a, ..., ag;Rl, vee Rh}, Pr=Ada, ..., ag;R'l, cer, Rlll'}
zwei Beschreibungen der Gruppen 7 resp.- 7' mit denselben Erzeugenden
und den Daten pp HOH*2I2P resp, p', HH 2H™*2T1' 2 P', so

verstehen wir unter einem Morphismus von ‘P nach ' einen Homo-

morphismus p : H=H' mit den Eigenschaften:

(16) (a) plF(ai bestimmt e1nen Isomorphismus g von F(a) auf
sich: plF(ai .F(a)-»F(a ) H".

(b) p(H*) C H'™*

H—L u

(c) das Diagramm lp lp' kommutiert,

F—£ F

p bildet dann I nach I' und P nach P' ab. Die Komposition zweier
Morphismen ist wieder ein solcher. Der identische Morphismus von ¥
auf sich ist durch p = idH, SaE= idF) festgelegt. Ein Morphismus
ist genau dann ein Isomorphismus, d. (hs.) besitzt einen inversen Morphis-

mus, wenn p : H—=H' isomorph ist. Fiir isomorphe P, B ' gilt:

h=h
pO
H——H' H—— H'

(17) Sind lp l ' und l l zwei Morphismen,
die dasselbe p induzieren, so unterscheiden sie sich um Identitéten,

d.h. es gilt: P, (r Y=p (r ). 5 mit ii €I'; umgekehrt ergibt sich
(4) Geometrisch lasst s1ch (14) beweisen, indem man ausnutzt, dass in_ K
jeder 2-Zyklus spharisch ist. Eine geeignete zellulire Abblldung s2-K
ergibt dann eine Relationenidentitit, die den vorgegebenen Zyklus
reprasentiert,

(5) Insbesondere fiihrt die Auswahl von anderen Erzeugendensymbolen
statt der r; bei der Konstruktion von H 8 F natirlich zu einer iso-
morphen Sl%uahon
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so durch Wahl der iJ! eI' aus P, stets ein b, mit demselben .

Der folgende Sachverhalt bringt Morphismen mit Q*-Transformationen

in Beziehung:

(18) P und ' sind genau dann isomorph, wenn sie Q*-aqui-

valent sind.

Beweis von (18): Fur Elementarschritte (A), (B), (C) lassen sich aus

deren Definition unmittelbar Beschreibungsisomorphismen angeben, und
zwar mit = idF fur (A), (B), p(rj) = rJ! fir (C). Daher sind Q*-
aquivalente Beschreibungen isomorph. Ist umgekehrt ein Beschreibungs-

isomorphismus

p p'

He—m

— P
—u_.’

o —

gegeben, so bilden die p(rl), vy p(rh) und die ri, ceey r}'l zwei
Operatorbasen von H'* bezliglich der Konjugation mit Elementen aus F,

.h. die w, p(r,)w,  resp. w rlw ilden eine Basis im gewOhnlichen
d.h. di kp(])kl kalbld B hnlich

Sinn, wenn w,_ die Elemente von F durchlduft. Zwei solche Operator-
basen konnen nach Rapaport ([13], Satz 1) oder dem relativen Nielsenschen
Satz (Satz 7) durch eine Folge aus freien Transformationen und Konjuga-
tionsschritten mit Konjugatoren w € ¥ ineinander uberfiihrt werden.
Daraus ergibt sich, dass B' aus B durch einen (C)-Schritt und an-
schliessende (B)- und (A)-Schritte hervorgeht, q.e. d.

Ein Beschreibungsmorphismus p von ¥ nach ‘' induziert eine
zelluldre stetige Abbildung K = K' der zugeordneten polyedrischen
Komplexe der Dimension < 2, Dabei bestimmt p vermoge
F /p(H*) = F/p'(H'*) den Fundamentalgruppenhomomorphismus und nach
(15) vermdge 1/P —»1'/P' den Homomorphismus Hz(f{)-» Hz(f{'). Ist
p ein Isomorphismus von ‘B nach B', so werden P, I, H*, H isomorph
auf die entsprechenden ‘B'-Daien abgebildet; daher entsteht eine
Abbildung K =K', die Isomorphismen der Fundamentalgruppen und der
zweiten Homologiegruppen der universellen Uberlagerungen induziert,

p ergibt also
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(a) eine Homotopiedquivalenz K = K' und
(19)
(b) einen Isomorphismus P — P',

p moge jetzt umgekehrt diese Eigenschaften (a) und (b) haben. Dann

induziert p

(20) Isomorphismen H/H* = H'/H'*

H*/I = H"*/1'
I/P -’I'/P'
P =P

denn die oberste Zeile folgt, weil F isomorph auf sich abgebildet wird,
was wir von jedem Morphismus verlangen; die zweite Zeile bedeutet,

dasE N(RJ.) Nisomorph auf N(RJ!) abgebildet wird, und die dritte, dass
HZ(K) - H2 (K') ein Isomorphismus ist; die Isomorphismen der 2. und
der 3, Zeile folgen also aus (a); (b) ergibt den der 4. Zeile. Nun erhalten
wir fir die H-Normalteilerreihe H 2 H* 212 P und die ensprechenden
P'-Daten aus (20) sukzessive von unten nach oben, dass p Isomorphismen
I-1I, H*—=H'* und H— H' bestimmt, d.h. ein Beschreibungsisomor-

phismus ist. Wir haben also gezeigt:

(21) Ein Beschreibungsmorphismus p von P nach ' ist genau

dann ein Isomorphismus, wenn er (19) erfillt.
Die Punkte (18) und (21) fassen wir zusammen zu dem

Lemma. Zwei Gruppenbeschreibungen ‘B, ' sind genau dann

Q*-Aquivalent, wenn es einen Beschreibungsmorphismus p von ‘B nach
P’ gibt, der sowohl
(a) eine Homotopiedquivalenz K =K' zugeordneter Polyeder als

auch

(b) einen Isomorphismus P = P' induziert.

Der Beweis von Satz 1 ergibt sich aus diesem Lemma nun unmittel-

bar, wenn man (2) berlicksichtigt.

Aus (3) folgt fir 7 =1 sogar
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Satz 2. Zwei Beschreibungen B, ' der trivialen Gruppe sind

genau dann dquivalent, wenn sie nach geeignetem Verlingern durch einen

Morphismus mit p = idF ineinander abgebildet werden konnen, der (19)
erfullt,

Fir eine Beschreibung P = {al, cees agf R (a), ..., Rg(ai)},
die Q*-dquivalent zu einer trivialen Beschreibung
Pr=ta, ..., ag]R'1 =a, ..., R} =ag} von 7=1 ist, erhalten wir

schirfer als (3) - nimlich ohne zusitzliches Verlangern -, dass
(22) B Q-aquivalent zu P' ist,

denn aus der urspringlichen Q*-Transformation ergibt sich eine Q—Trans-
formation der R, zufreien Transformierten der R]! = a]., wenn man die
(C)-Schritte nicht ausfithrt, Die (C)-Schritte lassen sich dann nachtriglich
durch einen (B)-Schritt ersetzen. Wenn man (22) bei (18) und (21)
berlicksichtigt, folgt, da (19a) fir zusammenziehbare K, K' immer gilt:

Satz 3. Eine Gruppenbeschreibung B = {a, ..., ag[Rl, ...,Rg}

von 7 =1 ist genau dann Q*-Aquivalent zu der trivialen Beschreibung
Pr=1a, .. 1o
p von B nach P' mit p= idF gibt, der einen Isomorphismus P = P’

o agf R =a , Ry = ag}, wenn es einen Morphismus

induziert.

Es mogen noch einige Einsichten {iber die Identititengruppe bzw. die
Peiffersche Gruppe einer Beschreibung ‘P folgen, wobei wir die

sukzessive eingeschrankten Falle:

() m=1, (B) K=0, (y) die Klasse der Q*-trivialen

Beschreibungen betrachten.

(¢) Da N(R].) = F(ai) gilt, gibt es zu jedem a, eine geeignete Relation
s, e H* mit s'i =a, Mit ihren p-Bildern sind die 8 frei, genauer: die
von den 8 frei erzeugte Untergruppe S C H* wird unter p isomorph
auf F(ai)- abgebildet. Zu jedem r € H* gibt es dann genau ein r € S

mit =7, d.h. r-T = ist eine Identitit. Es gilt:
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(23) 1 wird durch die H-Konjugierten der h + g2 Elemente

r.-r., j=1, ..., h und
(s] sJ)—s s - s t.oastalt
i ' S T "SS | i

i Sy i,i,k=l,...,gerzeugt.

I kann also bezliglich H-Konjugation insbesondere durch endlich viele
Elemente erzeugt werden.

Zum Beweis von (23) betrachten wir die Aquivalenzklassen, die in
H* durch die angegebenen Elemente erzeuget werden, r. ~ ?j hat fir
r e H* zur Folge, dass r~r' = ng(ai)si: wy(ai)_l, e, =1 mit
einem geeigneten F-Konjugiertenprodukt r' der 8; gilt, Aus

-1 -1
a.8,.8;, ~ 8, 8 ¢ 8, folgt dann sogar r ~r'~r" €S, r, r' und r"

iki k
unterscheiden sich nur um Identitdten. Filir r €1 gilt daher auch
r" €I, wegen des Isomorphismus p]S 1S = F(ai) also r" =1, Wir

haben somit r ~1 erhalten, q.e.d.

(8) Aus (15) und (23) folgt wegen Hz(f{) =0 und g =h:

(24) 1=P wird durch die H-Konjugierten der g + g’ Elemente
—-1
r, - rj und (si, s

j erzeugt,

k)

(y) Wir betrachten zunichst eine triviale Beschreibung

P=da, .. v R =ag}. Hier kdmnen wir s, =r;

wihlen und erhalten rj . r]. =1, sodass I =P durch die H-Konjugate
. -1 -1 -1

11{) erzeugt_1w1rd. _1Weg_eln (ri, rk) =TTy ri_ . airk ai

=a, - ((ai ri)- e (ri a.l)- e ) a, a, wird P als

Normalteiler in H von den Kommutatoren

.,ag]Rl=a

der (ri, r

21
=23 1y, -

[a,_lr,, ]
i1k
zeugenden ozi = ai‘

-1
r]=(a, r.a
ii

1

¥ ai'lrkai) erzeugt, Bezlglich der freien Er-
ry und e i, k=1, ..., g von H ist also die

Quotientenbildung H = H/P durch die Projektion
(25) F(ai) * F(rk) - F(oz.l) ® F(rk)

eines freien Produktes zweier freier Gruppen in deren direkte Summe
gegeben, Mit Hilfe des Reidemeister-Schreier-Verfahrens z. B. ergibt

o . -1 -1 .
sich daraus, dass der Kern P durch die w-v: [ozi, r. v ew " frei

1)
erzeugt wird, wenn w und v unabhingig voneinander alle r- resp.

a-Kurzwdrter durchlaufen. Diese Konjugate sind mit den [ozi, r ] aus

K
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P und ebenso ihre Bilder bei einem Beschreibungsmorphismus. Wir
erhalten daher fur die triviale Beschreibung P und - vermdge eines

Beschreibungsisomorphismus - auch fir jede zu ihr Q(*)—'a'.quivalente:

(26) Bei Auswahl eines geeigneten Reprisentanten X, aus jeder
Restklasse von H nach P und geeigneter gz-vieler Peiffer-

. . -1 .
scher Elemente yu besitzt P die xuyuxy als Basis,

Ist im Fall (8) eine Reduktion der Situation (24) auf (26) unmoglich, liegt
daher eine Q(*)—nichttriviale Beschreibungsklasse zu K ~ 0 vor. Weitere
Tests fur Q(_*)- und Q**-Aquivalenz folgen im nichsten Abschnitt, ohne

den Anspruch auf Vollstindigkeit der Liste zu erheben, (¢)

3. AQUIVALENZKRITERIEN

(a) Ist fiir zwei Gruppenbeschreibungen P = {al, vees agf R ,.. ,Rh}

1'1} von 7' ein Isomorphismus

[T F(ai) - F(ai) gegeben, der sich in einen Homomorphismus 7 = 7'

von 7 und P' = {al, cees ag]Rl, ..., R

durchdriickt, so gibt es stets einen Beschreibungsmorphismus Py :H-H',
der p induziert: p bildet namlich N(Rj) nach N(Ri) ab, und wenn
dabei Rj in ein F-Konjugiertenprodukt der R5 ubergeht, kann man
po(rj) als dasentsprechende F-Konjugiertenprodukt der r]! wahlen. Alle
moglichen flir p zuldssigen Morphismen p ergeben sich aus o, gemiss

(17) durch Variation der po(r].) um Identititen, Wir wollen untersuchen,

wann po zu einem fur p zulissigen Beschreibungsisomorphismus variiert

werden kann, Dazu ist notwendig, dass p sogar einen Isomorphismus von
7 auf 7' induziert, was wir in diesem Abschnitt von nun an stets annehmen
Ein zuldssiges p induziert in der Liste (20) dann bereits durch p
festgelegte Isomorphismen von H/H*, H*/I, also auch von H/I auf die
entsprechenden Gruppen von P'. Dass p, zu einem zuldssigen Beschrei-
bungsisomorphismus p variiert werden kann, ist gleichwertig damit,

dass bei

(¢} Z.B. ergibt ein Beschreibungsisomorphismus von ¥ nach ‘B’
Nielsen-aquivalente Erzeugendensysteme von H/I und H'/I' resp. H/P
und H'/P' vermdge der Zuordnung H — H'. Hieraus kann man versuchen,

Q(*)-Tests zu gewinnen,
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27) H/P — — — 2> H'/P' der durch p gegebene Isomor-
l phismus der unteren Zeile sich durch
HAI ———— o1 eine kommutative Erginzung zu einem
Isomorphismus der oberen hochheben
lasst, wobei die Bilder der H durch p bereits festgelegt

sind,

und anschliessend unter denselben Bedingungen bei

(28) H — £ —+H' ein Hochheben des unteren Isomor-
l l phismus zu einem der oberen Zeile
H/P —H'/P' moglich ist.

Alle hochgehobenen Homomorphismen H = H' mit p(ai) = u(ai) unter-

scheiden sich nimlich nur in den p(rj) und dies um Elemente aus I',

Sie sind daher mit der Hochhebung p 0 zulissige Morphismen fir p.
Dass bei (27) kein Hindernis auftritt, ist gleichwertig damit, dass

dabei ein Isomorphismus I/P = I'/P', also eine Homotopiedquivalenz

K =K' induziert werden kann, Im allgemeinen kann (27) selbst fiir

h =h' bereits unerfiillbar sein [7] und, falls doch, (28) z.B. nur fiir

eine bestimmte Wahl der Hochhebung bei (27). Die Entscheidung dariiber,

ob p zu einem Beschreibungsisomorphismus gehort, ist also im allge-

meinen kompliziert,

Sie vereinfacht sich jedoch im Falle, dass ‘P zu einem zusammen-
ziehbaren Komplex gehOrt und gepriift werden soll, ob ‘B Q*-trivial ist.
Dann kOnnen wir uns nach (22) auf u = idF beschrinken, und da fir ‘B
12 rees Rgg=ag}
gilt: ' = P! , ist bei (28) ein genau bestimmter Isomorphismus
p :H/P = H'/P' auf seine Hochhebbarkeit zu priifen.

Unter Berficksichtigung von (25) fiir ‘B' haben wir daher gezeigt:

bzw. die triviale Beschreibung ¥' = {al, Cee ag] Ri =a

Satz 4. Die Beschreibung p mit einem zusammenziehbaren

Komplex ist genau dann Q*-trivial, wenn in dem Diagramm

H—-L F(a)) * F(r})

L
H/P——E_>F(ai)®}?(rj), i’ j=1’ ey B
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sich die aus den 2g Bildern der ;s r]. bestehenden Erzeugenden von

F(ai) @ F(r]!) s0 zu einer Basis von F(ozi) * F(r]!) hochheben lassen,
in aj= rio, !

dass bei dem entstehenden Isomorphismus p jedes a 1%

(7) 1

{ibergeht.

Satz 4 legt es nahe, allgemein zu untersuchen,

(29) wann sich ein Erzeugendensystem der Linge m +n von
F(ai) ®Fb,)i=1, ..., m; j=1, ..., n zu einer Basis
von F( {ai} U {b]. = F(ai) * F(bj) hochheben lasst.

Fiir n=1 ist das immer der Fall, denn wenn

Yy Vm+1)

w (@), B 1), oy Wy (@), b
ist, kOnnen wir die linken Koordinaten mittels Nielsenscher Reduktionen

ein solches Erzeugendensystem

auf Normalform bringen und auf die rechten die analogen Schritte
anwenden. Ohne dass sich die Eigenschaft der Hochhebbarkeit dndert,
erhalten wir so

v! V! V!
)y «e., (a ,bm) m+1

(a, b 1, b ).

17
Der abelschgemachte Fall lehrt nun V;n+1 =1, so dass wir weiter-
transformieren kdnnen zu (al, 1, ..., (am, 1), (1, b). Diese Er-
zeugendenmenge ist hochhebbar und somit auch die urspriingliche.
Ein analoges Argument mit unimodularen Matrizen fiihrt auch bei
endlich vielen Summanden F(ai) ® F(b].) @ F(ck) ... zum Ziel, wenn
(30) alle Summanden bis auf hochstens einen den Rang 1 haben,

So bleibt als erster interessanter Fall bei (29) der mit m = n = 2; und
dieser tritt bei Satz 4 z. B. flir das von Osborne in [11] angegebene Bei-
spiel einer Darstellung mit zusammenziehbarem Komplex auf, bei welcher
die Q** — Trivialitit noch nicht geklirt ist:

(31) ¥ = {a, b; a ’b 'a’p, b ’a 'b%a)

(7) Vielleicht besteht hier eine Verbindung zu dem Faktorisierungsproblem
(D) bei Jaco [6], welches aquivalent zur 3-dim. Poincaré—Vermutung
ist.
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Zur Behandlung von (29) bietet sich m. E. ausser Methoden der kombi-
natorischen Gruppentheorie auch die von Rothaus z. B. in [15] verwendete
Technik an, die Erzeugenden einer freien Gruppe als Variable in einer
(ai, bj) Elemente

m-+n
aus F({ai} U {bj }), deren Projektionen F(ai) @ F(bj) erzeugen, so wird

Liegruppe L zu deuten. Sind Wl(ai’ bj)’ ceey W

vermoge
(al, cees s bl, cen, bn)*(wl, cens Wm+n)

m+n - I_‘m-+-n

eine differenzierbare Abbildung P, L gegeben. Aus der

Frage (29) wird dann:

m+n _ Lm+n

(32) Kann P, L um Konjugiertenprodukte der

Kommutatoren [ai, b].] auf den Bildkoordinaten so modi-
fiziert werden, dass ein Diffeomorphismus p : Ln[th -’Ln[th

entsteht ?

Zu ihrer Untersuchung stehen nun alle (algebraisch-) topologischen
Hilfsmittel der Theorie Liescher Gruppen zur Verfiigung, s. [15].

(b) Wir wenden uns wieder einer beliebigen Gruppenbeschreibung
B zu: P ist abgeschlossen beziglich Konjugation mit Elementen aus H,
ebenso [P, P]. Daher wird die abelschgemachte Gruppe P/[P, P] zu
einem H-Modul, ja sogar zu einem H/P-Modul, denn es gilt
hx - x + x h =hxh™' . hx T e b ThT ~heox - b7 far
X, X €P, h ¢H und die durch [P, P] in P erzeugten A quivalenzklassen
Ist daher ein Beschreibungsmorphismus p = von B nach P
gegeben, der einen Isomorphismus Py H/P = H'/P' induziert, (also
(27) erfiillt), so ldsst sich die Forderung (28) folgendermassen abschwéchen

(33) Die po(r].) missen um Elemente aus P so modifizierbar
sein, dass ein Beschreibungsmorphismus p entsteht, der
den H/P-Modul P/[P, P] isomorph auf den H'/P'-Modul
P'/[P', P'] abbildet.

(Bei jeder Modifikation um Elemente aus P gilt p = 50, so dass der

Isomorphismus der Operatoren festliegt. )
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Analoge Kriterien lassen sich aufstellen, wenn man P /[P, P] nur
als H*/P - oder H2(I~{)—Modul auffasst (letzteres vermoge (15)), Fiir
I statt P lassen sich ebenfalls solche Modultests angeben.

Aus (26) folgt fir eine Q(*)—triviale Beschreibung P :

(34) Der H/P-Modul P/[P, P] ist frei vom Rang g".

Bei der trivialen Beschreibung »' = {a , ..., ag]R'lzal,...,R;g=ag}
bilden gemiss den vor (26) durchgefiihrten Betrachtungen z. B. die
Restklassen der [ai, ri] oder der (ri, r!) eine Basis. (33) ergibt fur
eine zu 7 =1 gehdrige Beschreibung ¥ = la, ..., agl L Rg}
und B ' speziell ein Kriterium fiur die Q*—Trivialitit von ¥, wobei
p:H/P=H'/P' durch p = idF festgelegt ist. Dieser Test unterscheidet
u. U, mehr als die abstrakten Isomorphieforderungen, dass H/P direkte
Summe zweier freier Gruppen vom Rang g ist (s. (25)) und (34) gilt.

Sind zwei (beliebige) Gruppenbeschreibungen P , *B' isomorph, so
entsteht eine 1:1 Zuordnung zwischen den Morphismenmengen von
nach p und von ' nach p, wenn p dieselben Erzeugenden wie P’
hat. Hieraus lassen sich 1 :1 Zuordnungen der Homomorphismenmengen

entsprechender Moduln als Q*-Invarianztests gewinnen.

(c) Mit Hilfe Foxscher Ableitungen lassen sich die unter (b) ange-
gebenen Modul- in Matrizenkriterien verwandeln, Wir stellen ein solches
im folgenden sogleich fir die Abbildung H = H' eines Beschreibungs-

morphismus p von ¥ nach P' auf:

p ordnen wir die Matrix
o (a) op(a )

oa Y
1 g
: : 0
op(a op(a
o( g) o( g)
da e ca
1 g
dp(r ) dp(r)) op(r.) op(r )
g ceey I TETTTT ) sevy AT
aal aag arl ’ ’ arh,
ap(ry) op(ry) ap(ry) ap(r,)
gay ' 777 Odag or{ "t org
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zu, wobei wir die freien Ableitungen bereits als nach Z(H'/I') projeziert
annehmen, Fir einen Beschreibungsisomorphismus ist sie invertierbar.
Da die linke obere Teilmatrix von dem Isomorphismus u stammt, ist

die Invertierbarkeit gleichbedeutend mit derjenigen der rechten unteren

Teilmatrix
dp(r)) 3p(r )
orl Tt o
Ap = . . , wozu insbesondere
ap(r,) ap(ry)
Ty 0t Tar

h =h' vonnGten ist. Nehmen wir letzteres an, so ist Ap in dem Ring
oM aller h X h-Matrizen iber Z(H'/I') enthalten. Die Matrizen, deren
Zeilenvektoren die Ableitungen von Elementen aus I' nach ri, ceny rl'1
sind, bilden in I ein Linksideal . Sind p, und p fir p zuldssig,
so folgt aus (17):

35 A -A = .
(35) o o, B¢

p gehort daher hochstens dann zu einem Beschreibungsisomorphismus,

wenn

(36) Ap + B fir ein geeignetes B € N invertierbar ist.
0

Da die w(ai)-Konjugate der po(rj) die r]I bis auf Identitdten erzeugen,

ist die von Ap in M / N bestimmte Restklasse Kp stets invertierbar
0 . 0
beziglich Linksmultiplikation mit Elementen aus 9t , so dass wir bei den

Matrizen das (27), (28) entsprechende Hochhebungsproblem haben:

(37) Kann die "Einheit" Kp von M /N nach M hochgehoben
0
werden?

Ein Matrizenanalogon vom Typ des Schlussabsatzes von (b) ist der folgende
Sachverhalt. Man betrachte die invertierbaren Modifikationen E + B der
Einheitsmatrix E von I um Elemente aus . Da I ein Linksideal
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ist, bilden sie eine Gruppe g in . Ebenso folgt daraus:

(38) Wenn Ap Gberhaupt eine invertierbare Modifikation
0

Ap +B 0 besitzt, sind alle invertierbaren genau die Elemente
0

der Nebenklasse (Ap + BO)- g.
0

Aus (36), (3) und weiteren Punkten ergibt sich der folgende Q**-

Trivialitatstest:

Satz 5. Die Beschreibung P = fa;, «ooy ag]Rl, cee, Rg} zu

7 =1 ist hochstens dann Q**-trivial, wenn fiir einen beliebigen Mor-

phismus p mit p =id; in die triviale Beschreibung

MY — | J— | J— ilt. i
Pr=Ada, ..., :a.glR1 =2, e, Rg—ag} gilt: Die aus Ap0 durch

geeignetes Verlingern hervorgehende (g + k) X (g + k)-Matrix

eine Matrix B addiert, deren Zeilen geeignete Linearkombinationen

aus Ableitungsvektoren der Peifferschen Elemente (ri, rJ!) nach

ri, ey ! sind, die zu der verlangerten trivialen Beschreibung

N g+k 1 i
J:l = {al, cees ag+k’R1 =a, ..., Rg+k_ag+k

} gehSren.

(dy Wahrend bei (a), (b), (c) das Verlangern erst nachtraglich
in einen Isomorphietest fir B, P' eingebaut werden muss - wie bei
Satz 5 geschehen -, um eine Q**-Invarianzaussage zu erhalten, ergibt
sich im folgenden direkt eine solche, Wir wandeln dafiir die geometrische
Konsequenz, die Andrews und Curtis in [1] aus ihrer Vermutung zogen,
in ein Kriterium um. Die Idee entstammt einem Gesprich mit M, M.

(8)

Cohen und benutzt die Identititentheorie nicht.

(s) Analoge Sachverhalte lassen sich fiir den Vergleich beliebiger ¢, Y bei
zusammenziehbaren Komplexen oder Darstellungen einer beliebigen Gruppe
beweisen. Dem Vorteil, dass sich Q**-Invarianten ergeben, steht jedoch
der Nachteil gegeniiber, dass K und L trotz ¢(K) = ¢(L) verschiedenes
Einbettungsverhalten haben kdnnen, s, etwa Neuzil [9].

311



Satz 6, Wenn der zu einer Gruppenbeschreibung ‘P gehorige

zusammenziehbare Komplex K in s* iberhaupt nicht oder nur mit

771(S4 - K) # 0 polyedrisch eingebettet werden kann, gilt: (@) P ist
nicht Q**-trivial, und (8) es existiert eine 4-dim. Homotopiesphire

24, die von §' kombinatorisch verschieden ist.

Beweis: Jedes 2-dim., kompakte Polyeder K kann in das Innere
einer geeigneten Mannigfaltigkeit M' semilinear eingebettet werden.
N(K) sei eine regulire Umgebung von K im Inneren von M4. Ist K
zusammengziehbar, so ist 2t = (N X I) eine Homotopiesphidre. Vermoge
N x {1} kann K nach 3(N X I) eingebettet werden. Sein Komplement
ist dabei N x {0} plus ein offener Kragen um den Rand (2N) X {0},
also zusammenziehbar. Insbesondere ist es einfach zusammenhangend.
N X I ist regulire Umgebung von K X {3 }. Wenn daher ¢(K) die
triviale Klasse ¢ ist, folgt aus [1] oder [11], dass N X1 eine p.1.
Vollkugel D°, also * eine echte Sphire ist. ?) Falls ¢(K) die

triviale Klasse ist, kann K also in s* semilinear mit 'nl(S4 -K)=0

eingebettet werden, Die Formalumkehrung davon ist (@), und () folgt,

da K nach der vorstehenden Uberlegung dann zwar in 24, aber nicht
in 8* mit einfach zusammenhidngendem Komplement semilinear einge-

bettet werden kann, q. e. d.

4, RELATIVIERUNG

G sei eine beliebige Gruppe, F(ai) eine von a ag frei

s sees
erzeugte Gruppe. In G x* F(ai) betrachten wir den I&ormalteiler, der
von F(ai) erzeugt wird, Er wird'frei von den xa.ix_l mit x € G
erzeugt und G operiert auf ihm. Aquivalent dazu k6nnen wir auch von
einer freien Gruppe F(x(ai)) mit den freien Erzeugenden x(ai)

(& xa.x_l) sprechen, die durch G frei permutiert werden. Unter einem
i ’ ZaLer e

G-Erzeugendensystem von F(x(ai)) verstehen wir Elemente aj derart,

dass die simtlichen x(aj) F(x(ai)) erzeugen; sind die x(aj) eine Basis

(9) Bei[1] und [11] werden nur Q-Transformationen betrachtet. Die
Invarianz regulirer 5-dim. Umgebungen bei Q**-Transformationen folgt
aus den dortigen Betrachtungen jedoch unmittelbar.
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im gewodhnlichen Sinn, mOgen die o eine G-Basis heissen. Uber

Erzeugendensysteme gilt der folgende relative Nielsensche Satz, de',,‘-’

wir am Schluss dieser Arbeit beweisen werden:

Satz 7. Ein G-Erzeugendensystem «

12 ag, von F(x(a.l)),

i=1, ..., g der Linge g' =g lisst sich durch eine Folge von Elemen-

taroperationen (I) o = a].'l, (1) o > oo, j#3', () @ - x(ozj),

x € G (die Ubrigen Erzeugenden bleiben jeweils ungefindert) in das System

a a_ Uberfuhren, Insbesondere gilt g'=g. (Siehe auch Punkt

10 e
(a) des Anhangs. )

Die Elementaroperationen (I) und (II) erzeugen die gewohnlichen
freien Transformationen, zusammen mit (Il) ergeben sich die relativen

freien Transformationen.

(39) (a) Ein Ubergang ai-*aiil . x(ozj):tl oder ai*x(aj)il. aiﬂ,
i#j ist eine rel. freie Transformation.

(b) Permutationen sind (rel. ) freie Transformationen.

Da Elementaroperationen (I), (II), (III) G-Erzeugendensysteme in G-
Erzeugendensysteme und G-Basen in G-Basen uberfiihren, ergibt sich

bei Satz 7 iberdies, dass mit den a,

(40) die Oy e, ozg eine G-Basis bilden.

Gehen wir von einem G-Automorphismus f von F(x(ai)) auf sich aus,
so sind die f(ai) eine G-Basis. Satz 7 ergibt dann die Aufspaltung von f
in Elementarautomorphismen.,

Wenn wir in F(x(ai)) den von endlich vielen Elementen R1’ cees Rh
erzeugten G-invarianten Normalteiler N(Rj) bilden, erhalten wir eine

relative Gruppenbeschreibung

(41) =) P = {Ga, ..., a, IR, x(@), ..., R, (x(a,)}

einer Gruppe 7 = F(x(ai))/N(Rj). Durch {x(ai) |x(Rj)} ist dann eine
gewOhnliche Beschreibung von 7 gegeben, die allerdings i. allg. nicht
endlich ist. Vermoge der Operation auf F(x(ai)) operiert G auf .



Relative Q-, Q*- und Q**-Transformationen mogen analog zu den

absoluten erklirt sein, nur dass statt der gewohnlichen freien Trans-
formationen jeweils alle relativen zugelassen sind. Die zu G gehOrigen
relativen (Q**-) Aquivalenzklassen bezeichnen wir mit ¢G(“I§).

Zu G wahlen wir ein (i. allg. nicht kompaktes) zusammenhingendes
Polyeder L mit 111(L) = G; ein solches konnen wir etwa erhalten, indem
wir an eine Nullzelle fiir jedes X € G eine 1-Zelle anhdngen, und zu jeder
Relation unter den x eine 2-Zelle einkleben,

Einer relativen Gruppenbeschreibung ‘B zu G entspricht dann ein
zusammenhingendes Polyeder K 2 L mit endlichem K - L. und
Dim (K - L) =2. L ist dabei Retrakt von K bezliglich einer Retraktions-
abbildung r : K =L, fiir welche der Kern 7 von r, : m K) = nl(L)
gerade durch ¥ dargestellt wird, Umgekehrt lisst sich jeder Retrak-
tionssituation(1 9 yiK-L fir einen zusammenhidngenden CW-Komplex
K mit Teilkomplex L und endlichem K - L. der Dim = 2 eine relative
Gruppenbeschreibung des r -Kernes mit G = 171(L) zuordnen, s.Cohen
[4]. (1) nl(K) ist das semidirekte Produkt aus 7 und G bezlglich der
gegebenen Operation von G auf =,

Analog zum absoluten Fall lassen sich die zu G gehdrigen relativen

Beschreibungsklassen qu addieren und ergeben eine abelsche Halbgruppe

J((G) mit neutralem Element., Ist f: G—=G' ein Homomorphismus, so

induziert dieser einen Homomorphismus f, :3((G) = X(G'), indem man der
Gruppenbeschreibung P = {G; al, ..., ag| Rl(x(ai), cee, Rh(x(ai)) } die
Beschreibung zuordnet, bei der in den Relationen die x(ai) durch die

f(x)(a.l) ersetzt sind.

(10) In[7] werden etwas allgemeinere Begriffe von relativen Gruppen-
beschreibungen von 'nl(K) und Elementartransformationen verwendet,

die auch die Fille erfassen, bei denen L nicht Retrakt von K ist. In
dieser allgemeineren Situation lasst sich der Satz von P, Wright relativ

L beweisen, und zwar sogleich flir CW-Paare (K, L). Mit Hilfe von

Satz 7 ergibt sich dann auch die topologische Invarianz des eingeschrankten
einfachen Homotopietyps rel. L; s. Fussnote (2).

(11) Cohen versteht unter ¥ = {G;a , ..., ag\ R, ..., R} die Be-
schreibung von n K) = (F(ai) * G)/N(RJ.) statt des r -Kernes, ebenso

Rothaus [15].
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Im Falle der trivialen Gruppe G =1 ergibt sich I (G) =%. In
X(G) gibt es die Unterhalbgruppe, die von den Darstellungen P mit
n =1 gebildet wird; und diese umfasst wiederum die Halbgruppe 3 *(G),
fiir die zusitzlich g =h verlangt werde. ¥ bestimmt genau dann eine
Klasse aus J*(G), wenn bei den zugeordneten Polyedern L ein Defor-
mationsretrakt von K ist (vergl. [4]). Vermdge 7(K, L) ergibt sich
daher ein Epimorphismus JC*(G) = Wh*(G). Dabei ist Wh*(G) die
Teilhalbgruppe von Wh(G), die aus den Torsionswerten besteht, welche
sich durch Erweiterungen K von L mit G = L (L) und endlichem K - L
der Dimension = 2 realisieren lassen, siehe [7].

Wie im absoluten Fall lassen sich (G) oder Teilhalbgruppen
J'(G) zu Gruppen komplettieren. Fir induzierte Homomorphismen
f, : X'(G) = X'(G') resp. I*(G) > Wh*(G) gibt es dann jeweils genau
eine Fortsetzung zu Gruppenhomomorphismen.

Wir skizzieren, wie sich die Identititentheorie auf den relativen
Fall tbertragt. H wird zu einer Gruppe mit den freien Erzeugenden
x(a.l), x(r,); p:H—~ F(x(ai)) werde als G-Homomorphismus durch
dieselbe Formel wie im absoluten Fall erklirt. Alle weiteren Daten
werden ebenfalls wie im absoluten Fall definiert mit der Massgabe, dass
wir bei Untergruppen und Abbildungen durch Definition oder Beweis fir
Vertriglichkeit mit der G-Operation sorgen, H* ist dann z. B. eine
Gruppe mit Tis eees Ty als Operatorbasis beziiglich Konjugation mit
Elementen aus F(ai) * G; und wenn wir diese Operatoren bei Satz 7
verwenden, ergibt sich das relative Analogon zu (18), Bei (15) lautet

die relative Version:
(42) = (15a) f induziert einen Isomorphismus I/P ->H2(IN<, i),

wobei K die universelle Uberlagerung von K ist und L der iiber L
liegende Teilraum.
Von den sich daraus ergebenden Sitzen moge von Satz 1 exemplarisch

die relative Fassung formuliert werden:

Satz la. Zwei Gruppenbeschreibungen ¥ = {G; OERREL R, sRy

und P' = {G; ai, ey aé,IRi, ..., R} zu G sind genau dann rel.

dquivalent, wenn sie nach geeignetem Verldngern durch einen rel.
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Morphismus ineinander abgebildet werden k6nnen, der sowohl (a) eine

Homotopiedquivalenz K =K', die das gemeinsame, zu G gewidhlte

Teilpolyeder L punkiweise festlasst, als auch (b) einen Isomorphismus

der relativen Peifferschen Gruppen induziert.

Auch die Ergebnisse des 3. Abschnittes lassen sich relativieren,
z.B. kann man H' als Untergruppe von F(ai, rj) * G auffassen und
einem relativen Beschreibungsmorphismus p wieder eine Matrix
arl'(
Z((F(ai, rJ!) * G)/I") sind.
Fiir das Wh*-Problem ergibt sich daraus folgender Test. GehOrt
eine rel. Beschreibung ¥ = {G;a , ..., agIRl, cee Rg} zu J*(G),

so gibt es einen Morphismus p :' =¥ mit p=id in die triviale

ap(r.)
Ap = < J> zuordnen, wobei die Glieder der Matrix aus

Beschreibung T' = {G; AL, ey ag!Ri =a, ..., Rjg=ag}. Fir p

gilt (siehe die vor (37) durchgefilhrten ﬁberlegungen):
(43) Kp- ist invertierbar in M /M.

N ergibt sich hier wegen I' = P' fur Jc* (siehe (42)) aus den Ableitungen
der Peifferschen Elemente.

Vielleicht lassen sich mit Hilfe von (43) Elemente 7 von Wh(G)
als nicht zu Wh*(G) gehOrig erweisen, da Z((F(ai, r]!) x G)/P'") mehr
'Nichtkommutativitit' enthilt als Z(G) und daher (43) u.U. eine echte
Einschrinkung im Vergleich zur Invertierbarkeit der nach Z(G) pro-
jezierten Matrix Ap bedeutet.

Wihrend im absoluten Fall noch nicht geklart ist, ob Q*- und
Q**-Kquivalenz gleichwertig sind, wenn 7 =1 und g =h vorausgesetzt
werden, gibt es im relativen Fall Beispiele, die die Verschiedenheit der
Begriffe erweisen (vergl. [7], (34)). G = Zm (m = 2) habe das erzeugende
Element x. Wir betrachten dann mit S=a- x(@)- ... - xm_l(a) die

Darstellung
(44) B =1{z_;a|R=5" x@) - x5 ).
Sie ist nicht rel. Q*-trivial, da das von R in Z * Zm bestimmte

zyklisch gekiirzte Wort von a.il verschieden ist. Die zugehorige Gruppe
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ist 1=1,da R. xR)- ... - xm_l(R) ein Konjugat von x(S) ist, also

S und somit auch a zu N(R) gehdrt. Wenn wir P um eine weitere
Erzeugende b zu ‘Bl verlangern, ergibt die folgende Q-Transfor-
mationsfolge bei den Relationen die @-Trivialitit von “]31:

R,b=R, S-b=b": x@)- x(), S- b3b'. x@@)- x(b), b>a, b.
Dabei gilt der mit * bezeichnete Ubergang, weil das Produkt der xi—
Konjugate, i=0, ..., m-1 von b . x(a)- x(b) wiederum ein Konju-
gat von x(8) ergibt. Siehe auch Punkt (e¢) des Anhangs.

Die Beispiele von (@) Osborne [11] und (8) Neumann-Rapaport [13],
die vielleicht die Andrews-Curtis Vermutung widerlegen, entstehen
ubrigens auch aus relativen Beschreibungen durch Vernachlassigung der
G-Aktion:

(45) = (31a) (@) P = {Zz;ala_3 . x@)7 ' a?- x@)} resp.

B P = {23;a|x(a)'2- al. x@@)- a). Dabei

ist x erzeugendes Element von Zz resp. ZB.

Satz 8. f:K—>K' sei eine Abbildung zwischen zusammenhingen-
(12) .
Teil-

den CW-Komplexen, die den gemeinsamen zusammenhingenden

komplex L punktweise festlisst und einen Isomorphismus nl(K) ->711(K')
induziert. Dabei seien K - L und K' - L endlich mit Dim(K' - L) = 1.

Dann ist f eine einfache Homotopiedquivalenz und homotop rel. L zu

einer formalen Deformation g : K =K', bei der hochstens 2-dimensionale

Erweiterungen notig sind.

Beweis: p: K1 —-+K und p':K'—> Ki seien formale Deformationen
rel. L der Dimension = 2 derart, dass K1 und Ki aus L durch
Anhingen je einer endlichen Anzahl von Schleifen an eine Nullzelle e’

hervorgehen. a ag resp. ai, ceey ajg, seien durch sie bestimmte

IETE
Erzeugende von ﬂ1(Ki) ~ (L) * F(a{), wobei e’ als Basispunkt
o'

- f -
dienen moge. Bei K1 A K-K' - Ki konnen wir ferner o. B. d. A.

S -1 :
annehmen, dass a; inein Produkt der xa;x , X € 771(L) und ihrer

(12) Fir zusammenhangendes L ergibt sich diese Antwort auf die Frage
von Wall unmittelbar aus Satz 7. Ich habe nicht geprift, ob die Verall-
gemeinerung auf Schwierigkeiten stosst, falls nur K und K' zusammen-
hingend sind. Vergl. Anhang, (a).

317



Inversen Gbergeht, denn durch Vorschalten einer weiteren formalen
Deformation rel. L der Dim =2 vor p koOnnen wir dies sonst immer
erreichen. Der durch p'fp induzierte Isomorphismus

m L) = F(a.l) -+ nl(L) * F(a{) bildet daher nicht nur LS (L) identisch auf
sich ab, sondern es entsteht auch ein mit der m (L.)-Operation vertrig-
licher Isomorphismus i : F(x(ai)) - F(x(a{)). Aus Satz 7 folgt nun g=g'
und die Existenz einer Folge von Elementarschritten (I), (II), (III), welche
die Operatorbasis w(ai), i=1, ..., g in die aus den a{ bestehende
tberfiihrt. Diese Folge ergibt, dass p'fp homotop rel. L ist zu einer
formalen Deformation g K1 -'Ki der Dim = 2. Vermoge der zu p
resp. p' inversen formalen Deformationen p : K — K1 resp. p' :K'l-*K'
folgt dann: f~g = p'glp, und g hat mit seinen Faktoren die gewiinschten
Eigenschaften, q.e. d.

Wir haben noch den Beweis des rel. Nielsenschen Satzes nachzu-
tragen. Er wird in Anlehnung an Nielsen [10] gefiihrt, wobei wir ihn zur
Abwechslung in einen indirekten Beweis verwandeln. Die Idee besteht
darin, dass man auf die x(ozj) als Worte in den x(ai) die gewOhnliche
Kiirzungsmethode anwendet und zu erreichen versucht, dass dies G-
dquivariant moglich ist. Dabei stdsst man auf ein Hindernis, wenn z. B.
ein a]. bei der gewOhnlichen Kurzungsmethode mit x(aj) multipliziert
wird. Die Betrachtung (47) zu Beweisbeginn dient daher dem Nachweis,
dass ein solches Hindernis in Wirklichkeit unter der Voraussetzung g'=g

nicht auftritt,

Beweis von Satz 7: Der Epimorphismus p : F(x(ai)) - F(ai)

entstehe durch 'Herauskiirzen der G-Operation’, d.h., jedes x(ai) werde
auf a, abgebildet. Da F(ai) eine freie Gruppe vom Rang g ist und von

den p(ozj) erzeugt wird, ergibt sich

(46) g'=g und zusammen mit der Voraussetzung g' < g die
Schlussbehauptung.

Fiir ein G-Erzeugendensystem Qs eens ag folgt, dass sich
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(47) ozj und x(ozj) bei ozj- x(a,) stets um weniger als die

Hilfte der Linge 1(a;) kirzen, (3)

denn wenn «@, gerade Lange hat, misste es sonst die Gestalt ozj:r . x(r)_1

haben, was zur Folge hitte, dass F(ai) wegen p(aj) =1 bereits von
den tbrigen p(ai) erzeugt wird, im Widerspruch zu Rang(F(ai)) =g.
Im Falle ungerader Linge von ozj misste sich sonst das mittlere
Erzeugendensymbol von @, gegen das mittlere von x(aj) kiirzen, was
wegen der Gleichheit der Exponenten unmoglich ist.

ai, ..., @' selein System, dass sich aus den a; durch endliche
Anwendung der Elementaroperationen (I), (II), (III) ergibt und minimale
Langensumme % 1(01{) hat. Wir zeigen durch Herbeifuhrung eines

i=l
Widerspruchs, dass dann kein a{ eine Lange = 2 hat. Dann folgt aus

Betrachtungen analog zu (46), dass die ai eine Permutation der

X, @) 1, e, xg(ag)gg, = *1 sind und mit weiteren freien Trans-
formationen daher in die Basis aus den a, iberfuhrt werden konnen
(s. (39n)).

Gibe es ein @ mit l(ai) > 2, so existierte geméiss Nielsen [10]
ein Kurzwort W in den x(ozi) mit a;, = Wo(x(ai)) in F(x(a.l)), bei

0
dem entweder

. +1 . +1
*) ein xl(a{ ) von einem Nachbarelement xz(ai ) in w

1 2
um mehr als die Hilfte seiner Lange gekiirzt wird oder

0

. +1 - . .
(**) ein xl(a{ ) von gerader Lange ist und von seinen Nach-
1
barelementen in W, je zur Hilfte gekirzt wird.

Der Fall (*) kann jedoch in Wirklichkeit nicht eintreten, denn fiir
i1 = i2 verbietet ihn (47) bei gleichen Exponenten; bei ungleichen
Exponenten musste x = x, sein, und w  wire nicht kurz gewesen.

1
Fir i1 # i2 ergabe sich die Moglichkeit einer Transformation, die die
Gesamtliange weiter reduziert, im Widerspruch zu deren vorausgesetzter
Minimalitat.

(13) Unter der Lange eines Elementes von F(x(a.l)) verstehen wir die

gewoOhnliche Linge des Kurzwortes in den x(ai).
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Im Fall (**) ergibt sich jetzt zusatzlich, dass die betreffenden

Nachbarelemente mindestens die Lénge von «! haben, denn sonst wirde

flir ein solches Nachbarelement doch die Situation (*) vorliegen. Wenn

. +1 . . . .

wir von x, (ozi ) und einem geeigneten seiner beiden Nachbarelemente
1

in W, ausgehen, erhalten wir aus (**) daher die Existenz einer Situation
1 1 e -1

(48) «a! =u-v, x(a] )" =v - w,e=%1, u, v, w und

i i

1

u-v,v -w kurz, 1(u) = 1(v) = 1(w) und i1 + iz’

wobei i1 #+ i2 wiederum aus (47) und der Kiirze von W folgt,

Wir zeigen jetzt, dass man auf die ai weitere rel. freie Transfor-
mationen anwenden kann, die die Linge jedes Elementes nicht dndern -
(*) bleibt also weiterhin ausgeschlossen -, und zwar so, dass am Ende
auch (48) und damit (**) nicht mehr auftritt (2. Nielsenscher Prozess).
Der Endzustand ergibt dann den gewlinschten Widerspruch.

Wegen (39b) konnen wir o. B. d. A. W) =lap) =... = l(aé)

annehmen. a{l sei das fruheste Element in dieser Anordnung der a{
mit der Eigenschaft (48). Wenn dann ein a{ mit i2 # i1 (von minde-
stens gleicher Lange wie ail) mit x_l(v)_1 2anféingt, ersetzen wir
diesen Anfangsteil durch x_l(u). Wenn ai mit x_l(v) endet, ersetzen
wir dies Endstuck durch x_l(u)_l. Beide Pzrozesse sind vom Typ (39a),

also rel, freie Transformationen. Sie erhalten die Linge von oz{ , da
g 2

sonst » l(a{) verkleinert werden konnte. Insbesondere kommen sich
i=1

daher der Anfangs- und Endstlickaustausch nie 'in die Quere', obwohl es

moglich ist, dass beide auf ein @; angewendet werden missen.
2

(49) Nach diesen Austauschprozessen hat ai die Eigenschaft (48)
nicht mehr, !
denn die Notwendigkeit eines weiteren Austausches musste sich auf ein
Anfangs- oder Endstilick beziehen, das schon einmal ausgetauscht wurde;

dann ergibe sich jedoch x_l(u) = y_l(v)_1 und somit p(a{ ) =1, was bei
1
der Begrundung von (47) bereits als unmogilich erwiesen wurde.
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Wenn wir das Erzeugendensystem nach dem Austauschen mit a{’

bezeichnen, gilt weiter:

(50) Kein Element ai’ vor ai’ (= a{ ) hat die Eigenschaft
2 1 1
(48) neu erworben,

denn ein solches Element ai’z hat hochstens die Lange von a{l. Ist

sie kleiner als die von ail, gilt: ai‘z = aiz; ist sie gleich der von

a{l, kann hochstens das Anfangsstiick von ozi’ ausgetauscht worden sein,
denn sonst hitte bereits ai die Eigenschaft (48) gehabt. In jedem Fall
hat also ein ai’ von geradtzar Lénge vor a{’l dieselbe rechte Halfte v’
wie a{ mit 1(v") = 1(u) = 1(v). v'"! war vor den Austauschprozessen
n_icﬂArffang eines x(oz{)8 mit i # 12, 1(0:{) = 1(a{2), insbesondere nicht

fur i=i, d.h v'"! ist nicht Anfang eines x(u) oder x(v)"!. Die

x(a{') mit i# iz’ l(a{') = 1(0:; ) haben als Anfangsstiicke der Linge

ll ‘. 2 .
1(v") :=1(u); dieselben Gesamtmoglichkeiten wie zuvor: diese wurden
-1

nimlich entweder beibehalten oder als ein Anfangsstiick eines x ©(v)
gegen das gleicher Linge von x (u) ersetzt, die aber beide wegen

ai’ = ai ohnehin vertreten waren und es weiter sind.
1 1

-1

v ist also auch nicht Anfang eines x(ai") mit i # 12,

1(0:{') = 1(ai' ), d.h. (50) ist nachgewiesen.
2
Aus (49) und (50) folgt nun, dass in dem Erzeugendensystem
a;', vee, ozjg' mit 1(0:1') = 1(oz'2') =... = l(aé) das erste Element mit der
Eigenschaft (48) einen grosseren Index als i hat. Wir konnen daher

induktiv den Fall (48) Giberhaupt ausschliessen, q.e. d.

ANHANG

Ich mochte noch eine Ubersicht Gber einige Resultate geben, die im
Zusammenhang mit der vorliegenden Arbeit entstanden sind. In den
meisten Fillen sind die Beweise zu umfangreich und sollen daher an

anderer Stelle publiziert werden.
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(a) Zusammen mit Gert Denk habe ich einen relativen Grushko-
Neumann-Satz erhalten. In G * G1 * ... ¥ Gm betrachte man den von
den Gi erzeugten Normalteiler F. Dann gilt mit analogen Begriffen

wie zu Beginn von Abschnitt 4 der

Satz. Fin G-Erzeugendensystem « an von F lisst sich

IR
durch relative freie Transformationen in ein solches {iberfiihren, bei dem

jede Erzeugende in einem Gi liegt.

Da n # m zugelassen ist, kann daraus insbesondere die Voraus-
setzung g' =g bei dem rel. Nielsenschen Satz 7 als entbehrlich erwiesen
werden; im Falle g'> g entstehen dabei g' - g triviale Erzeugende.

Unser Beweis ist eine Variante der Ublichen Kilirzungsmethode,

Wir haben jedoch vor, zu untersuchen, ob auch die geometrische Methode
von Stallings zum Ziel fuhrt. Weiter ergeben sich vermutlich - wie im
absoluten Fall - Versionen des Satzes flir Gruppoide bzw. fir beliebige
Indexmengen, (Die Gruppoidversion ist evtl. fur Fussnote (12) hilfreich. )
Letztens: Auch andere Sitze der kombinatorischen Gruppentheorie - z. B.
den Satz von Kurosch - wollen wir daraufhin untersuchen, ob sie ein

Analogon im relativen Fall besitzen.

(b) Beziiglich der in 1. (a) II genannten Fragen habe ich kiirzlich

das folgende Resultat erzielt:

Aus ¢(K) = ¢(L) folgt K' x IaL, wobei K' ein zweidimensionales
Polyeder mit K K" ist.

Als Spezialfall fir ¢(K) = ¢0 zu 7= 1 ergibt sich daher K' X I~ 0 fir
einaus K durch = 2-dimensionale Erweiterungen hervorgehendes Poly-
eder K'. Gegenwirtig untersuche ich, ob diese zweidimensionalen
Erweiterungen riickgingig gemacht werden kdnnen, ohne dass die
'Zeeman-Eigenschaft' verloren geht.

Fiir gewisse induktiv konstruierte Serien zusammenziehbarer
Komplexe K’ mit ¢(K’) = 9, haben Winfried Becker und Albert

Zimmermann die Zeemansche Vermutung bewiesen,
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(¢) Aus einem Resultat von Klaus Sauermann und Gabriele Wessel

folgt, dass zu den Beschreibungen {al, ceny agl R,..., Rg}, bei
denen die R, freie Transformierte der Eh sind, gewisse 'modifizierte’
Standardkomplexe K’ gehOren, die K? X I 0 erfiillen. Diese koll-
abieren sogar prismatisch, d.h. das 3-dim. 'Material' kann vollstindig
entfernt werden, indem man fir jede 2-Zelle ei2 von K2 Eiz X I von
oben, unten oder beiden Richtungen bis auf je eine schrig liegende
2-Zelle kollabiert und so einen kollabierbaren zweidimensionalen Rest
erhalt.

Marshall M. Cohen hat hierzu kiirzlich die Umkehrung bewiesen:

(51) Wenn K’ X I prismatisch kollabiert, bestimmen die 2-
Zellen von K2 Relationen R]., von denen geeignete Kon-
jugierte WjRjo_l freie Transformierte der Erzeugenden

sind.

Da sich die technischen Einschrinkungen an die Komplexe, die in
dem Verfanren von Sauermann und Wessel bisher notig sind, evtl,
beseitigen lassen, ist prismatische Kollabierbarkeit vermutlich durch
(51) charakterisiert.

Die ersten Untersuchungen {iber prismatische Kollabierbarkeit
stammen von A. Zimmermann, der in seiner Dissertation ein not-
wendiges Kriterium fiir sie angegeben hat, welches die Umgebungs-
graphen (= lirk) der Eckpurkte von K’ betrifft. Damit konnte er
z. B. zeigen, dass K2 x I bezuglich keiner semilinearen Zellaufteilung
von ]K2 ] prismatisch kollabiert, wenn K’ der Standardkomplex zu
{a, bla’b’, ab} ist.

(d) Die folgende Beobachtung bezieht sich ebenfalls auf 1. (a) I:

(52) Fiir ein nichttriviales aber invertierbares ¢(K’) mit
9(K”) + $(L*) = ¢_ kollabiert (K v L)X 1 nicht, obwohl
¢(K v L) = 9, erfillt ist.

Wenn nimlich (K~ L) X I~0 gilt, so kollabieren K XI und L X1 auf
eindimensionale Teilpolyeder und damit iiberhaupt, da letztere Biume sein
miissen, K X I~a0 ist aber mit ¢(K) = ¢0 unvertriaglich, Man kann dies
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Ergebnis auch so formulieren:

' (53) Falls die Vermutung von Zeeman fur die triviale Klasse gilt,
ist ein nichttriviales ¢ € JC* nicht invertierbar (vergl. die

Situation bei 3-Mannigfaltigkeiten bezliglich #).

(e) Die fur (44) verwendete Konstruktionsidee liefert auch das

folgende Beispiel:

(54) B=12z,+7; a]| R=hgla- h@@) - a- gl - h@) "},

wobei h, g Zz resp. Z erzeugen,

Da R . h(R) ein Konjugat von a -« h(a) ist, gilt 7 =1, Bei den zu-
gehOrigen Komplexen K3 L ist die Berandungsabbildung
C,(K, L) > C (K, L) durch die nichttriviale Einheit!?)

(55) u=hg+hgh+1-g-gheZG), G=Z2*Z

gegeben, Sie bestimmt jedoch kein nichttriviales Element aus Wh*(G),
denn (o) ist Wh(G) = 0 und (B8) ldsst sich nach dem im Anschluss an
(44) beschriebenen Verfahren fiir alle zu (54) analogen Beispiele mit

Zm (statt Zz) die Q**-Trivialitat feststellen, obwohl Wh(G) im
allgemeinen nicht verschwindet., Trotzdem ist (54) hier wiedergegeben,
denn u. U. ergibt eine kleine Modifikation nicht nur nichttriviale Ein-
heiten, sondern sogar Elemente, die ein Wh*(G) als von Null verschieden

erweisen.

LITERATURVERZEICHNIS

[1] J. J. Andrews and M. L. Curtis. Free groups and handlebodies,
Proc. A. M. S. 16 (1965), 192-5,
[2] W. Browning. A relative Nielsen theorem, preprint, Ithaca, N.Y.

[3] M. M. Cohen. A course in simple-homotopy theory, Springer-
Verlag, New York-Heidelberg-Berlin (1973).

(14) Diese Einheit wurde zuerst von J. H. C. Whitehead angegeben. Seine
Rechnung, dass (g 2) elementardquivalent zu ((1] g) ist, ist bei Cohen
[3], S. 41 wiedergegeben.

324



[12]

[13]

[14]

[15]

[16]

[17]

M. M. Cohen. Whitehead torsion, group extensions, and Zeeman's
conjecture in high dimensions, Topology 16 (1977), 79-88.
R. Craggs. Free Heegard diagrams and extended Nielsen trans-

formations I, I, preprint, Illinois, Urbana.

W. Jaco. Heegard splittings and splitting homomorphisms, Trans.

A. M. S. 144 (1969), 365-79.

W. Metzler. Uber den Homotopietyp zweidimensionaler CW-
Komplexe und Elementartransformationen bei Darstellungen von
Gruppen durch Erzeugende und definierende Relationen, J. reine
und angew. Math, 285 (1976), 7-23.

L. Neuwirth, An algorithm for the construction of 3-manifolds
from 2-complexes, Proc. Camb. Phil. Soc. 64 (1968), 603-13.

J. P. Neuzil. Embedding the dunce hat in S4, Topology 12 (1973),
411-15.

J. Nielsen. Uber die Isomorphismen unendlicher Gruppen ohne
Relation, Math. Ann. 79 (1919), 269-72,

R. P, Osborne. On the 4-dimensional Poincaré-conjecture for
manifolds with 2-dimensional spines, Can. Math. Bull. 17 (1974),
549-52,

R. Peiffer. Uber Identititen zwischen Relationen, Math. Ann, 121
(1949), 67-99.

E. S. Rapaport. Groups of order 1, some properties of presenta-
tions, Acta Math. 121 (1968), 127-50.

K. Reidemeister. Uber Identititen von Relationen, Abh. Math.
Sem. Univ. Hamburg 16 (1949), 114-18,

O. S. Rothaus. On the nontriviality of some group extensions

given by generators and relations, Bull. A. M. S. 82 (1976),
284-6; Ann. of Math. 106 (1977), 599-612,

A. J. Sieradski. Combinatorial isomorphisms and combinatorial
homotopy equivalences, J. of Pure and Applied Algebra 7 (1976),
59-95,

C. T. C. Wall, Formal deformations, Proc. London Math. Soc.
(3) 16 (1966), 342-52.

325



[18] C. T. C. Wall. Finiteness conditions for CW-Complexes I, II,
Ann, Math. 81 (1965), 56-69, and Proc. Royal Soc. Ser. A, 295
(1966), 129-39,

[19] P. Wright. Group presentations and formal deformations, Trans,
A, M. S. 208 (1975), 161-9.

[20] E. C. Zeeman. On the dunce hat, Topology 2 (1964), 341-58.

326



18 - Two-dimensional complexes with torsion values not
realizable by self-equivalences™

WOLFGANG METZLER

University of Frankfurt

1. STATEMENT OF PROBLEM AND DISCUSSION OF RESULT

The study of the group e(Kz) of self-equivalences of a two-
dimensional complex K® has so far led only to cases, where all values
of the Whitehead group can be realized as 7(f), [f] € e(Kz), see Cockroft
and Moss [2], Dyer and Sieradski [5] and Olum [8]. It is the aim of the
present paper to show by examples that this is not true in general; there
exist nonrealizable torsion values even for finitely generated fundamental

groups:

Theorem 1. The standard complex K? of the presentation

{a, b|oP, aba'b™!) of 7=17x Z, P prime, has nonrealizable

torsion values if and only if the class number, h(p), of the p-th cyclotomic

(1)

field is different from 1.

This result has consequences for the problem, which torsion values
lie in Wh*(7), (2) and the still unsolved question (see Cohen [3], p. 81 and
problem D6 of this volume), whether homotopy type equals simple-
homotopy type for all finite 2-complexes:

Theorem 2. If 7  is nonrealizable with respect to e(K’), but

-7, eWh*('nl(Kz)), then the corresponding extension LZo K2 gives rise

to complexes L and K with the same homotopy type but different simple-

homotopy types.

* With an appendix on algebraic K-theory by C. T. C. Wall.

(1) In Theorem 1' below we will state in detail which torsion values can
be realized. The smallest prime with h(p) > 1 is known to be p = 23
with h =3,

(2) that is, which occur as 7(L, K) for a finite CW-pair with L*wK,
dim(L -K) =2 and 7= 7, (K). See [4], [6], [7], [9] and problem D8.

327



Thus Theorem 1 gives either

(A) values -7, £ Wh* - like Rothaus [9] -

or examples showing that

(B) even in dimension 2 simple-homotopy type is a finer classification
than homotopy type.
Which of these alternatives (A), (B) really holds, or if both can

occur, possibly even in one example, is a topic for further research.

Proof of Theorgm 2. If 7(L, K)= -7, € Wh*, then the deformation
retraction r of K &L N K fulfils 7(r) = Ty since
0= 7(ri) = 7(r) + r 7(i) = 7(r) + r i, 7L, K) = 7(r) +.7(L, K) (see Cohen
[3], p. 72).

An additional simple-homotopy equivalence, f : K = L, would yield
the self-equivalence rf of K having the '"forbidden' value
7(rf) = 7(r) + r 7(f) = T +r, (0)= Ty A€ d.

With Ty nonrealizable with respect to e(KZ), the same conclusion
even implies that an arbitrary complex I.,, homotopy equivalent to K’
by a map L —K? with torsion 7,, fulfils L% K>,

As there always exist deformation retractions L K’ with pre-

scribed ‘TO, the question arises whether

L’ has the simple-homotopy type of a 2-dimensional complex, if

7 is nonrealizable with respect to e(KZ).

Compare this with the discussion of Cockroft and Moss [2], as well as
Cohen [3] from p. 79 on. This discussion is continued by the present
paper.

Before starting with details I would like to make a comment on the

origin of this paper.

(1) ZLet £, f' be continuous maps K2 ->K2, which coincide on
the 1-skeleton. Then the images of the 2-cells of a cellular
structure lifted to the universal covering K? differ by elements
of H2(I~(2).

Therefore, it is appropriate to look for complexes with
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'small’ HZ(IN{Z) (and 'few' ﬂl-automorphisms)

but

Narge' Wh('nl),

in order to obtain nonrealizable torsion values. This is suggested too by
the fact that an element of Wh(nl) always becomes realizable if one takes
the wedge product of K? with a finite number of 2-spheres.

At first I thought of one-relator groups in this context. If Wh(n)
of a one-relator group contains elements which cannot be represented by
1 X 1 matrices, then at least they cannot be realized by self-equivalences
f of the standard complex K? which induce the identity isomorphism f_
of 7= L But as far as I know such elements of the Whitehead-group
of one-relator groups are not known (compare problem AQ).

I had already tested several finite groups in vain, when at the
Durham symposium C. T. C. Wall and H. Bass pointed out to me the
result about the algebraic K-theory of Z X Zp which is cited in (12). I
am very much indebted to them, because their explanations were the
missing link between what I knew and what I wanted to obtain. Without

"Durham’ this paper probably would not have come into existence.

2. CONSTRUCTION AND PROOFS

(a) Consider the group 7 =7 X Z ,mEeN, and the standard
complex K’ defined by its presentation {a, b' bm, aba lp? }; (in (@)
we will specialize to the case of a prime m = p). With respect to an
appropriate fundamental systemNE, E, ﬁl, ﬁz of 1- and 2-dimensional
cells the boundary relations of K are the Fox derivatives of the defining
relators:

m-1 . _
(2) @R, =0&+(3 b)b
i=0

(1-bra+(a-1)rb.

=
[

As can be seen immediately, this implies that the 2-chains Z1 =(1 —b)-fil

~

and Z2 =(a - 1)-R1 - Z-ﬁz are cycles, with Y as an abbreviation for
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m-1
2 b. But, moreover
i=0

(3) Zl and Z2 generate Hz(fi),

since an arbitrary chain c, € C2(I~{) can be modified to c; =n- ﬁl + - fiz,
n €Z, B € Z(n), by a Z(n)-linear combination of z, and Zz’ having

boundary
e} =f-(1-b)-a+(@-(a-1)+n- 2) b

In the case of a cycle c, we end up with a cycle_ c'z. In particular we get
B:(a-1)+n- Y =0, Passing over to coefficient sums gives n-. m = 0.
Thus n vanishes.

Becauseof 0 =$-(a-1)+n- Y =F+ (a-1), B must vanish too,
as a -1 is nota zero divisor in Z(m). We have shown c'2 =0 fora
cycle c,, 80 ¢, is a linear combination of Z1 and Zz' (Remark that

Z1 and 22 are linearly dependent. )

(b) Obviously the possible 7, -automorphisms are given by

€ X
a—-+a -b

b =b" with integer exponents & = =1,
-l=r=m-2, (r, m) =1, Next we show that

(4) at most those with r = +1 can be induced by a homotopy

equivalence K =K,

(Lemma 1 and Theorem 1' below will show that this is even a sufficient

condition. )

Proof of (4). By the homotopy extension property for CW-complexes
we may assume without loss of generality that a self-equivalence f:K =K

is normalized in the 1-skeleton such that fl of the diagram

f

(5 c,® ——F—c,K)

O

cl(fc) ———1——-->c1(f<)
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is given by the matrix

X

e-1)/2 e b-1
(6) € a( , a’ s +7
r
b -1
0 , -1

of Fox derivatives of the nl-automorphism.

n
is an abbreviation for the corresponding geometric

b'-1
b-1 -1 -2 n
series, in the case where n< 0:-b " -b “ - ... - b .) In what follows

(Here,

we will always assume this normalization to be given,
If f, has matrix (3 g), using (2), (5) and (6) we arrive at the

matrix equality:

X
(7) 0, 3 e-age_l)/? aa-%f*ll a B\ /0, 2

: r
T aSpt , %_'Tl y 6 /\1-b, a-1
Comparing the left lower entries of the resulting matrices on both sides,

we get
1-b) e d&D2_5. -

First mapping a =1 and then arguing with congruences as in [6], p. 17,

this gives

(8) GOEr- € mod m
as a value for the coefficient sum 6°.

Now (2) implies immediately that Hz(K) is a free group of rank 1
freely generated by R2 (the 2-cell of K, which is covered by Rz)'
Moreover 6° defines the HZ(K)-homomorphism. Thus in the case of a
self-equivalence we have 6° = 1, and by (8) and the fact that

-1 =r=m-2, (4) is proved.

(¢) We now look for solutions (;‘f g) of the equation (7) with the
property r = 1, It is well known that they can be realized geometrically.

A particular solution is given by
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a f r, 0

y 0 0, er Ae-D/2, \fr-1/2

as can be seen by direct computation.
Thus (1) and (3) give the general solution
9) a g r+2a (1-b) +p (a-1), -p -2

1
D2 T2,

vy 0 Az(l-b) + uz(a-l) , €T s
Ai’ B € Z(m) .

fNG is always an isomorphism and by (6), so is fN1 in the case where

r = =1, Hence we have

(10) f is a self-equivalence if and only if the matrix (3 [g) in
(9) describing fz is invertible.

The matrix of ;0 (= idC (k)) moreover belongs to the trivial Whitehead
0 ~
class, and on account of (6) the same holds for that of fl in the case

r = 1, Thus we have for a (normalized) self-equivalence:
_ (@B
an 0 =rC
Setting A, =, = 0 and varying X, K, we get by (9), (10) and (11):

Lemma 1. 1Inthe case r =1, all torsion values can be realized

by self-equivalences of KZ, which are totally in the left summand of the

decomposition
Wh(n) = (UZ(n)) /£7) © SK_ (Z(n)).

In fact, a unit of Z(7) can be writtenas r + 7\1 - (1-b) + Byt (a-1)
up to sign.

We want to prove that the condition of Lemma 1 is also necessary
in the case of a prime m = p. The key observation is the following: An

invertible matrix of type (9) becomes elementary equivalent toa 1 X 1-
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matrix if we factor the group ring by the ideal (}), because then it takes

the form (I 2). Thus:

Lemma 2. Let A = Z(Z X Zm)/(E). Then the fz-matrix, (g g),
of a normalized self-equivalence of K2 determines an element of the left
summand in the decomposition Kl M=t ® SKl p).

(d) Because of 71=2Z X Zm, Z(m) can be viewed as the ring
of L-polynomials over Z(Zm). When m 1is a prime p, to which case we
will restrict ourselves from now on, A = Z(7)/(2) is the ring of L-
polynomials over Z(Zp)/(Z), the integers of the p-th cyclotomic field Kp.
We use now (see the appendix for an outline of the proof):

(12) (i) The projection SK1 (Z(n)) = SK1 (A) is an isomorphism.
(ii) Both groups in (i) are isomorphic to the ideal class group
of Kp' Thus they have order h(p).

Now look at the diagram

Wh(n) = (U(Z(m)/£7) ® SK, (Z(m))

T =~
K (Z(m) = U(Z(n)) & SK (Z(n)

L= by (121)
K (A) =1 ® SK (1)

It reveals that a matrix (S ﬁ) having a nontrivial SKl-component
with respect to Wh(7) also gives rise to a nontrivial SKl-part in K1 (A).
However, for the 'f;-matrix of a normalized self-equivalence of K? the
latter cannot occur, as lemma 2 shows. Together with Lemma 1 this

consideration implies:

Theorem 1'. Exactly those torsion values T, can be realized by

self-equivalences of Kz, which lie in the left summand of the decomposition

Wh(m) = (U(Z(n))/£7) & SK_ (Z(7)) .

Given such a T and an arbitrary nl-automorphism f,, satisfying the

necessary condition r = x1, there exists a self-equivalence f, with




torsion T and induced automorphism f,.

Because of (12ii) we have |SKl (Z('n))| = h(p), so Theorem 1 is

proven a fortiori.

3. APPENDIX ON ALGEBRAIC K-THEORY BY C. T. C. WALL

We recall and slightly modify the notation of the paper. The group
1T=127Z X Zp = p X 0, say, where the factors have generators t, b. Set
T =14+b+b>+...+ bp-l, and write A for the quotient of the group
ring Zn by the ideal (¥ ) generated by 7. Then we assert
(i)  The projection SK1 (Zn) —~ SKl(A) is an isomorphism.

(ii) The groups in (i) are isomorphic to the ideal class group of the

cyclotomic field of pth roots of unity.

I am indebted to Mike Stein for substantial assistance with the proof.

The proof depends on various techniques described in Bass' book
[1]. We first describe these and cite some relevant results, then give the
argument,

A Milnor square [11, p. 19] is a commutative diagram of ring epi-

morphisms

f
o o (p) (9", -8)

which is bicartesian - i.e. the sequence 0 +A - A'®B—>B'—~0

(of additive groups) is exact. It is'not essential for some results that

f, g are surjective but it is for others. The example needed here is
Zo ——> Zo /) =0,
Z ——— F

The idea is to reduce questions about Zo to questions about Dp’ Z and

F_.
p
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A ring is (right) regular if it is right noetherian and finitely genera-
ted (right) modules have finite homological dimension. These rings are
easier to study because questions about projective modules can be re-
duced to questions about the more flexible class of finitely generated
modules. The rings Dp, Z and Zp are all regular, If A is any
regular ring, the group ring Ap (p infinite cyclic) is regular,

For any additive functor F on rings, and ring A, the retraction
Aft] = A defined by t =1 defines a splitting F(A[t]) = F(A) ® NF(A),

say. The commutative square

A—————A[t]

l

At — AL, t ']=Ap

defines a map F(A) © N+F(A) © N F(A) = F(Ap) (where N, N  refer
to the extensions by t, t! respectively) and F is called a contracted
functor if this is naturally a split injection, the other summand being
denoted LF(A).

The following examples of contracted functors are given by Bass
[1, chapter XII].

(7.2) If F is contracted, soare NF and LF.
(7. 4) K1 is contracted, with LKl = Ko'
(7.8) For commutative rings A, det : K1 = U is a split epi-

morphism of contracted functors, so SK1 is contracted.

It has also been shown by Quillen that for any n =1, Kn is contracted
with LKn = Kn-l‘
For several contracted functors F it is the case that a Milnor

This result is proved in [10, p. 236),

square (as above) gives rise to an exact sequence (see [1, XII, 8, 3])
F(A) > F@A') ® F(B) > F(B") = LF((A) > LF(A") ® LF(B) > LF(B').

This is true for F =K,  (see [1, p. 481] or [11 Theorem 3. 3]) and for
F = K2 [11, Theorem 6, 4]. Moreover if the property holds for F, it
also holds for NF and LF [1, XII, 8.1].
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Finally, there are several vanishing theorems for regular rings.
If A is regular and commutative, then NSK, (A)=o0 [1, X, 10.1].
Indeed by Quillen [12, p. 114] NKi(A) =0 forall i=1.

We are now ready to start the proof. Applying to the Milnor square
(A1) the exact sequence corresponding to the contracted functor NKz’

we obtain
v NKQ(]Fp) ->NK1(ZU) -’NKl(Dp) ® NKl(Z) - ...

The outside terms vanish by regularity, hence NKl (Zo) = 0. Now since

K1 is contracted,

K (Z7) =K (Z(p X 0))
=K (Zoft, t™1])
=K, (Zo) © K _(Z0)
K, () =K (Zp®0)
=K, (9ft, 1)
- K (9,) @K (D)

since we have just seen that the NK1 terms vanish. Corresponding
results hold for SK1 (note that NSKl) will vanish as a~summand of NKI);
here K0 is replaced by LSKl, which is the subgroup K0 corresponding
to zero rank ([1, XI, 7.9)]: note that Zo and Dp both have connected
spectrum). Now SKI(Dp) =0 [1, p. 330] and SKl(Zcr) =0 [1, p. 623]

so we have isomorphisms

SKl (Zn) = IN{O(ZU),
SKl(A) = KO(DP) .

The fact (i) that the obvious quotient map is an isomorphism now

follows (see [11, p. 29] from well-known results: in the exact sequence
K, (@) ® K, ()~ K, (F ) = K (Z0) > K (Z) ®K (D) = K (F),

X -
Kl(Dp) maps onto K1 (le) = ]Fp , and KO(Z) = KO(]Fp) =~ Z. Finally the
identification (ii) of Kl(Dp) with the class group Pic(Dp) can be found on
[1, p. 468] or - perhaps better - [11, Corollary 1,11].
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19 - Applications of Nielsen’s reduction method to the
solution of combinatorial problems in group
theory: a survey

GERHARD ROSENBERGER*

University of Dortmund

In this paper we use the terminology and notation of [12] and [51].
One finds there the concepts and results concerning combinatorial des-
criptions of groups which are used (but not always further explained)

below.

§1. THE NIELSEN REDUCTION METHOD IN AMALGAMATED FREE
PRODUCTS AND HNN GROUPS

One of the most important methods in the theory of free groups and
some similar groups, is the Nielsen reduction method. If F is the free
group with free generators a, b, ... one can define a notion of free
length L in F (relative to the generators a, b, ...) and a certain
lexicographical ordering. The Nielsen reduction method in F concerns

Nielsen transformation from systems {g]. }, to systems which are

shorter with respect to the length L and or]degring (ef. [21], [22], [54])).

If we apply this method to a finite system {xl, ceey X !, we
arrive after a finite number of steps at a system in which no element and
no inverse of an element can shorten another by more than half, and no
two can shorten another to nothing - i, e. a system which possesses the
Nielsen property with respect to L. Nielsen ([21], [22]) used the pro-
perty for the proof that subgroups of free groups are free. To be sure, one
cannot define a meaningful length function in every group (cf. [4], [8],

[13]). A length satisfying certain 'natural’ axioms exists essentially only
in free products. A

We next give a brief survey of the development of Nielsen's reduction

method by Zieschang by the introduction of notions of length and order in

amalgamated free products [51]. Peczynski and Reiwer carried over these

* With thanks to Terry Wall for the English translation.
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methods to HNN groups [26]. In this section
H=H *A H2, H1 +A ¢H2

denotes the non-trivial free product of the groups Hl and H2 with
amalgam A = H1 n H2 and

- o
K = (B, t|rel B, t lKlt=K_1>

the HNN extension with basis B, stable letter t, and conjugated sub-
groups K1 and K_l, where « :K1 —>K_1 is an isomorphism. We
choose in each Hi (i=1, 2) asystem Li of left coset representatives
of A in Hi’ normalised by taking 1 to represent A. Each x € H has
a unique representation x = hl. ..hna with a €A, 1# hj € L1 ] L2 and
hj+1 ;!Li if hj € Li' The length of x is definedas L(x) =n; H is
(partially) ordered by length. In order to obtain results analogous to
Nielsen's theorems on free groups, it is found that the ordering defined
by L is too coarse. Thus - as in the free group case - we need a finer
ordering of H.

For this purpose we define a symmetric normal form for elements
x € H. We take the inverses Li'1 of the left coset representatives as a
system of right coset representatives. Then each x € H has a unique
representation

x=l1 lmkrm... r

1

. -1 -
with m = 0, keH1 UHz’ 1;&1]. €L1UL2, 1#1“]. EL1 UL2 , and

; T-1 o, -1
IJ._,’_lfc’Li if ljeLi, rj+1¢Li if rjELi

if k €A, lm and ro belong to different Hi (if m=1),
if keH.-A,1 ¢H. and r_¢H, (if m=1),
i m i m i

_ 42m if keA .
We have L(x) = {2m+ 1 i k gA" We call 1 ... 1 the leading half,

raeee T the rear half and k the kernel of x. One advantage of this
symmetric normal form is that in forming products, cancellations can

usually be reduced to free cancellation.
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We have analogous normal forms in K. A representation

€ € €

x=ht'ht?,..nt"
1 2 n

hn+1, ei:tl, hieB

in K is said to be reduced if €41 = 7 implies hi+1 £ K€i+1. Now
choose normalised systems Rl, respectively R_l, of left coset repre-
sentatives of Kl, respectively K_l in B. Then each element x €K
may be uniquely represented as
€ € €
x=1t 1 t?...1t™
1 2 n

with €, =21, beB, 1. €eR_ and g, =€,

i i € i i
length L(x) is defined to be n. Again we take the inverses R;l, R:i
as systems of right coset representatives. Each x € K has a reduced

1 when 1i+1: 1. The

representation

€ € n n
L1t Mgt My t !
m

x=11t r

m°"" 1

. -1 . .E -
with m = 0, 1i eRei, r €R_ni, and k—ehlt h2 (l;l, h2 € B) if L(x)
is odd, k € B if L(x) is even. Then llt Lo, lmt ™M is called the

m

leading half, tnmrm. ot r. the rear half and k the kernel of x.

We now introduce orderings on H and K, beginning with H. For
our applications, the groups will be countable. This is no restriction if
one considers finitely generated subgroups of H and K (in particular,
Theorems 1.1 to 1. 5 hold for arbitrary H and K). Enumerate the
system L1 (similarly L2) as {xi :i € N}, and order it correspondingly.
Let the elements of L1 precede those of Lz‘ Then we order (for each m)
the products 11 eee lm of coset representatives (where 1 # 1j € L1 u L2
and 1j 1 4 Li when lj € Li) lexicographically. The following properties

of this ordering are used in the proof:

] ’ ] 3 ]
1 I 11 lm < 11 1m then for any permitted lm+1, 1m+1 we
have l1 1m+1< l'1 1'm+1'
(2) Each product 11 cen lm has only finitely many predecessors of the

form 1 ... 1 1' (where 1' €L, if 1 eL.).
1 m-1"m m i m i
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We define an ordering on the products of coset representatives in the

Li_l by taking inverses.

We now proceed similarly in K. First choose total orders of the
systems Rl, R_1 of coset representatives, and then order the products

€ e
llt .. lmt m using the lexicographical ordering of the sequence

1

1t lm).

Now we extend this ordering to the set of pairs 1{g, g '}, g € H,
respectively, K, where the notation is so chosen that the leading half of
g precedes that of g_1 with respect to the ordering <. Then we set
{g, g7t} <{g", ¢!} if either L(g) < L(g") or L(g) = L(g') and the
leading half of g strictly precedes that of g', or L(g) = L(g'), the
leading halves of g and g' coincide, and the leading half of g_l pre-
cedes that of g'"'. Thus if {g, g ') <{g", ¢!} and
{g', g 1<{g, '}, g and g' differ only in the kernel. A system
{gj }jeJ in H or K is called shorter than a system {g]! }jeJ if
{gj, g7l }<{gJ!, gj.-l } holds for all j € J, but for at least one j,

{g]!, gj'l 1< {gj, g]Tl } fails. A system {gj }jeJ is said to be minimal
with respect to < if there is no system freely equivalent to {gj }jeJ
which is shorter.

The Nielsen reduction method in H or K now refers to Nielsen

transformation from systems {gj }jeJ

investigation of minimal systems; and thus copies the Nielsen reduction

to shorter systems, and the

method in free groups. An analysis of the results of Zieschang [51] for
H produces

Theorem 1.1 (Theorem 1 of [51] and Corollary 2 of [34]). A finite

system {xl, ey Xn} C H is Nielsen equivalent to a system

{yl, v yn} satisfying one (at least) of the following:

€
q

(i) Each we (yl, cee yn> has a representation w = yul e Yy

1
with L(y ) =L(w) for
i

g = +1, where g =g

if u, =u,
i+l — i

i+1

i=1, ..., q . .

(ii) There is a product a = yu1 v yuq, a # 1, with Yy €A
1 q i
(i=1,...,q) andin one factor Hj an element x ¢A with
xax ! €A.
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(iii) For some p =1, p of the ‘A lie in a subgroup of H conjugate to

H1 or Hz’ not all in A, and some product in them is conjugate to

an element of A different from 1.

(iv) For some g €H, v, 4 gAg-l but there exists m € N with
1#y)" cgAg .

The Nielsen transformation can be chosen in finitely many steps so that

ey xn} or the lengths of the

{yl, Cees yn} is shorter than {xl,

elements remain the same.

Remarks. (1) If {xl,

it follows in case (i) that L(yi) =1 for i=1, ..., n. In case (iii) we

, xn} is a system of generators for H,

find that p = 2, since in the case of systems of generators conjugation

defines a Nielsen transformation.

(2) If we merely ask for a combinatorial description of <X1’ - ,Xn>
by generators and relations, we find - after appropriate conjugation -
that again p = 2 in case (iii).

As immediate consequences of Theorem 1.1 we have

Corollary 1 [11]. Suppose A malnormal in Hl and in H2 and

N a subgroup of rank 2 in G. Then N is either the free product of

two cyclic groups or conjugate to a subgroup of H1 or of Hz'

Corollary 2. If H has rank 2, a generating system {xl, Xz}

for H is Nielsen equivalent to a system {yl, v, } for which case (i),

(ii) or (iv) occurs.

A closer investigation of groups H of rank 2 yields further

Theorem 1.2 ([42], [38]). Suppose H of rank 2 and A cyclic,

Further suppose <X1> malnormal in H for every system {xl, x2} of

generators of H with <X1> nA # {1}. Then every generating system

{xl, x_ } of H is Nielsen equivalent to a system ly,, yz} with

2
v, eHl and v, eHZ. In particular H has a combinatorial definition

H=(a, b|R (", b)=R2(am, b)=... =1),
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where (a) is malnormal in H, m = 2, and if ord a is finite, m

divides orda. Further, {xl, X, } is Nielsen equivalent to a system

Y

{a¥, z) with z e(@™, b) and y=1 if orda=®, 1 =y < orda,

(y, orda)=1 if orda < o,

Remark. A further direct consequence of Theorem 1,1 is Grusko's
theorem for finitely generated free products (the case A = {1}). How-
ever, the proof of Theorem 1.1 gives no definite hint that Grusko's
theorem breaks down for finitely generated amalgamated free products

H1 *A Hz' In the proof one studies minimal systems {xl, ceey xn} such

that one can find w € <X1’ cee xn> and a representation
e £
.0 q _ _ . _ .
WEX X (ei =1, & = &4 if u, = ui+1) with L(xu.) > L(w)

1 q J
for some j; one seeks possible reasons for this, and then lists the

reasons. One cannot deduce from the proof to what extent (ii) to (iv) are
genuine restrictions. Theorem 1.2 shows precisely that for the generating
pairs {xl, X, ! which appear there, case (iv) occurs; nevertheless we
find that Grusko's theorem holds for such pairs. However examples are
considered in [34] which show that none of the cases (ii) to (iv) can be
omitted, The following example already shows that Grusko's theorem
does not hold in general for amalgamated free products.

Let H =(s, s [s:=s =1, H =(s, s [s:=s,"=1) with
m> 2 odd, A=(ss, = (s354)-1> and H=H, %, H. Then
H= <S1S2, slss) and {slsz, 5,8, } is not Nielsen equivalent to a
system {x, x } with x, e H UH  (cf. [10], [25], [34]). This also

gives a counterexample to the plausible conjecture
Rk(H1 *A H2) = RkHl + Rl«:H2 - RKA,

For K, Peczynski and Reiwer obtained the analogous result by

considerations corresponding to those in [51].

Theorem 1.3 [26]. Each finite system {xl, cens Xn} CK is

Nielsen equivalent to a system {yl, ceey yn} for which one of the

following holds:

e e
(i) PFach w ¢ (yl, ey yn> has a representation w = yu1 ... yuq
1 q
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(ai =+, e, =¢e,,, i u= ui+1) with L(yu_) = L(w) for
1<i=q. !

(ii) Some subgroup of K conjugate to B contains p of the Vs and

some product in them is conjugate to a non-trivial element of Kl,

As first application of Theorem 1, 3 one has a new proof of a

reduction theorem of Pride:

Theorem 1.4 ([26], [27]). Suppose K of rank 2 and both K
and K = malnormalin B. Then any system {xl, Xz} of generators
of K is Nielsen equivalent to a system 1{t%g, h} with e =21, g ¢ B

and heK UK ..
—_— 1 -1

As further direct application of Theorem 1.1 and Theorem 1. 3 one

has a new proof of a subgroup theorem of H. Neumann:

Theorem 1.5 ([19]). Let U be a finitely generated subgroup of
H with gug ' nA = {1} forall g €H, or of K with gUg™" nKn={1}
(n =41) forall g €K, Then U=TF * (i’gl Gi)’ where F is a free group

and each Gi is conjugate to a subgroup of H1 or of H » respectively to

a subgroup of B.

A proof for K is givenin [26]. For H the hypotheses say that
none of the cases (ii)-(iv) of Theorem 1. 1 can occur. Hence case (i)
of Theorem 1.1 must occur. But this case states directly that each
relation in U is a consequence of relations from H1 or from H2.

A close investigation of cases (ii) to (iv) of Theorem 1. 1 respec-
tively (ii) of Theorem 1. 3 leads to further applications of these Theorems.
We proceed to such applications in §2 and §3.

§2. THE ISOMORPHISM PROBLEM FOR ONE-RELATOR GROUPS

Let G= (al, ceey By ’R = 1) be a group with one defining relation.
We say that the isomorphism problem for G is solvable if there is an
algorithm allowing one to decide in finitely many steps whether a given
further growp H=(a , ..., a_ IS = 1) with one defining relation is iso-

morphic to G or not. As application of Theorem 1. 4, Pride obtained
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Theorem 2.1 ([27], [28]). Let G =({t, a|P6 =1), 6 =2. Then
the isomorphism problem for G is solvable.

Pride showed in [28] that one may assume without loss of generality
that P is cyclically reduced, is not a proper power in the free group on
t and a, and the sum of the exponents of t in P is zero (cf. [12]). If
P is 1 or a primitive element, the assertion of Theorem 2.1 is clear,
Now suppose P neither trivial nor primitive. Set a, = t” ia,ti (i € 2).
Let Q be the word expressing P in terms of the a. Let m, respec-
tively M, be the least, respectively greatest, value of i for which a,
appears in Q. Then G is an HNN group

G=(am,...,aM,tlQ =1, t a,itza.i =m, ..., M-1).

The conjugate subgroups K = (am, ceey Ay 1) g.nd K_l=<am+1, e ,aM)
o aylQ =1 (et [12], [18],

[20]). Now apply Theorem 1. 4 to see that a generating system {xl, X, 1

are malnormal in the basis B = (am, ..

for G is Nielsen equivalent to a system {tg, h}, geB, he K_l. This
pair {tg, h} is Nielsen equivalent to {t, a} (cf. [28]). Now Theorem
2.1 follows by using the Whitehead algorithm (cf. [14], [55], [56]). As

consequence of Theorem 2.1 we have

Corollary. Suppose G as in Theorem 2.1, Then (a) G is hopfian

(cf. [27, Theorem 2]). (b) The automorphism group of G is finitely
generated (cf. [9], [16]).

Remark., Suppose G as in Theorem 2.1 and not decomposable as
a free product of cyclic groups. Then each automorphism of G can be
lifted to an automorphism of the free group of rank 2. Thus the deter-
mination of the automorphisms of G is equivalent to the determination
of the stabilisers and symmetries of the element P(t, a)‘5 in the free
group on t and a. Such problems are thoroughly investigated in [47].
This and further work leads to various results on the automorphism group
Aut G of G, for example the following. If G/G' is free abelian of rank 2
i.e. if P(t, a) € G', then Aut G is complete, i.e. it has trivial centre

and every automorphism of Aut G is inner.
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Theorem 1.1 can also be applied to the solution of the isomorphism
problem for certain one-relator groups, particularly for those that can
be decomposed as a nontrivial free product with cyclic amalgam. Typical

examples of such groups are

Gz(al, eev, @
'y21

WL IR bqlW(al, e, ap)V(bl, e, bq)"fz 1)

with V and W non-trivial. Let G denote such a group for the remain-

der of this paragraph.

Theorem 2.2 ([37]). If y = 2, the isomorphism problem for G

is solvable.

If G is decomposable as a free product of cyclic groups, the
assertion of Theorem 2.2 is clear. Now suppose G not decomposable
as a free product. We display G as amalgamated free product

Hl *A H2 with

H =(@,...,2), H =<s,b,...,bq!sY=1> y =2

and A is generated by W' =Vs. Now let (%, ven,s xp+q} be a
minimal system of generators of G. By Theorem 1.1 we can consider
without loss of generality case (iii) of 1. 1. With the help of [2] and [44]
one finds: this case (iii) occurs for H, and we take ) Xp €H .
By refactorising it follows similarly that we can also suppose

xp+1, oo Xoig
to {al, ey B b, ..
Whitehead algorithm (cf. [14], [55], [56])).

As in [28] follows

€H,. Butthen {x, ..., Xp+q } is Nielsen equivalent

., bq} and the result again follows using the

Corollary. A group G as in Theorem 2.2 is hopfian, and Aut G

is finitely generated.

Now suppose y =1, This case, i.e. the torsion free case, is more
difficult. Here it may happen that G possesses infinitely many Nielsen
equivalence classes. Even for y =1 the isomorphism problem for G

is solvable if
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o
W=(, ...a n[:a.nﬂ, an+2]...[ap_1, ap]) , 0=n=p, .22, a=1

PR m B >
Vo=, b P b kD g, b ), 0=m=q, £=2, A=1

(where a=1 if p=1 and =1 if q = 1) are alternating products.
These groups are of interest because they include the fundamental groups
of closed surfaces and groups of torus knots as special cases. We
suppose for the rest of this section that W and V are such alternating
products. The following result, which is important in the discussion of
case (iii) of Theorem 1.1, is the essential tool for the solution of the
isomorphism problem. It is proved using the Nielsen reduction method

in free groups.

Theorem 2.3 [39]. Let F be the free group on a, -
(p=1). Let {xl, cees xr} (r = 1) be any system in F, and

wl e <X1’ ceey Xr> for some u # 0 with W an alternating product as

+5 2y

above. Then one of the following cases occurs:

(a) {xl, ey X } is Nielsen equivalent to a system {yl, cees Vo }
with y = 2wPz™t p> 0, z € F.
(b) We have r =p, and {xl, ey X } is Nielsen equivalent to a

. i -1 . -
system {yl, cies yr} with y =za, 'z ", yilai (i=1, ..., n),

yJ.:zajz_1 (j=n+1,...,p), z €F.

Corollary [39]. Suppose (@, ..., ozn) =2, If ¢ is an endo-
morphism of F which leaves W fixed, then the ¢ is an automorphism
of F.

Automorphisms of F which fix a particular word W were studied
in [50]. The above Theorem 2. 3 extends some results of [48] (the question
of when two alternating products are related is considered there). Using

Theorem 2. 3 one can show:

Theorem 2.4 (cf. [23], [34], [35], [39], [51]). If p=2 or q=2

then there are only finitely many distinct Nielsen equivalence classes of

minimal generating systems {xl, EETIE S }, and for each system there

is a presentation of G with one defining relation.
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The solution of the isomorphism problem for G follows from this
(if p=2 or gq=2).

It follows as a corollary thatif p=2 or q = 2 every automor-
phism of G is induced by an automorphism of the free group of rank
p + 9. This gives a new proof of the result of Nielsen, that every auto-
morphism of the fundamental group of a closed orientable (respectively
nonorientable) surface of genus g is induced by an automorphism of the
free group of rank 2g (respectively g) (cf. also [23], [34], [51], [54).
Moreover the automorphism group of G is finitely generated.

If p=q=1 and o, + Bl = 4, there is only one Nielsen equivalence
class of generating systems {xl, X, }, and there is nothing to prove.

If p=q=1 and o, + Bl = 5, there are infinitely many distinct
Nielsen equivalence classes of generating systems {xl, X, } (et [35],

[52]), and each generating system {xl, X, } is freely equivalent to just

1Y
one system {a ", b ) with (v, ) =(»

10 Py al):('yz’ Bl)zl and

1’
3y a,l=y = %yl a, (cf. [52]). By [6], such a system

b2} can only give rise to a one-relator presentation of G if
v. =1 or Y, = 1. The solution of the isomorphism problem for G in
the case p =q =1 now follows. Here again, every automorphism of

G is induced by an automorphism of the free group of rank 2 [43].

Remarks. (1) Theorem 2.1 and Theorem 2. 2 lead one to make
the following conjecture: The isomorphism problem is solvable for one-
relator groups with torsion,

This is not the case for torsion-free one-relator groups. Recently
Brunner [3] found an example of a torsion free group with infinitely many
Nielsen-inequivalent one-relator presentations. This example also contra-
dicts a conjecture of Magnus about the possible one-relator presentations
of a group (cf. [14, p. 401]). The above groups with y =1 yield further
counterexamples to this conjecture (cf. [17], [34], [35], [51], [52)]).

(2) In[5], Theorem 1.1 is applied to describe generators and

presentations of a one-relator group with centre.
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(3) The methods developed for the proof of Theorems 2.1 and 2, 2
yield some results about subgroups of one-relator groups with torsion

(cf. [29], [36]). In particular,

Suppose H = (al, ceey an|R5 = 1) with R eyclically reduced and
6 =2, and let U be a subgroup of H of rank 2. Then U is either a
free product of two cyclic groups or a one-relator group with torsion
([29)).

This result is not generally valid for subgroups U of rank 3: indeed
neither for H as in Theorem 2.1 nor for H as in 2.2. However we do

have the following result for some groups G as in Theorem 2. 2.
Theorem 2.5 ([42]). Let G=fa, ..., B by e bql
(W(al, cens ap)\_f(bl, cens bq))yz D, y=1,p=2,q=2, W and V

non-trivial. Suppose W, respectively V, not a proper power in

(a.l, cee, ap> respectively <b1’ ey bq). Then every subgroup U C G

of rank three is a free product of cyclic groups.

This theorem extends a result of B. Baumslag [1] about subgroups
U C G of rank two. The corresponding assertion for subgroups of rank
four is not true (cf. [36] and [42]).

§3, AUTOMORPHISMS OF DISCONTINUOUS PLANE GROUPS

In this paragraph we investigate the groups

1 m
Grz(sl,...,sm,al,...,apls1 =...=s8_
1 an Y
=s ...s @ " ...afa a2 o] [ap_l, ap]) =1,

with Y = 2, a].zz, y=l,0=n=p, m=3 if p=0 and m=2 if

p = 1. These groups are of interest because they include as special

cases the discontinuous plane groups (without reflections) with compact
fundamental region, In{11],[38] and [53] the question is considered
(among others), which of the groups G are decomposable as amalgamated
free product. Theorems 1.1 and 2. 3 together with [25, Theorem 1] yield
the following result about the rank problem for G.
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Theorem 3.1 (cf. [25], [34], [39]). Therank G is

(a) pg_m:O,p>1,

() m-2 if p=0, m is even, andall 2] equal 2 except for one,
which is odd,

(¢) p+m-1 inall other cases.

Case (b) of Theorem 3.1 is unexpected; here the rank differs from
what one would anticipate on geometrical grounds. If G is a discontinu-
ous plane group, without reflections, and having a compact fundamental
region, then for each connected closed fundamental region F of G there
are at least p (for m = 0) respectively p+ m -1 (for m = 1) pairs
X, X ' €G for which xF n F has dimension =1 (cf. [25]). Thus
Theorem 3.1 asserts that the rank of G need not coincide with the geo-
metrical rank.

By using the Reidemeister-Schreier algorithm one can obtain from
Theorem 3.1 a lower bound for the rank of a discontinuous plane group
which has a compact fundamental region and contains reflections (cf. [46]).

Now suppose if p= 0 that

m

m-2-73 y;'>0

=1
(in particular G is infinite). If m = 3 and p = 0 it follows from [40]
that every automorphism of G is induced by an automorphism of the free
group of rank 2 (cf. also[54]). If m=1 and p=2 G is a one-relator
group, and it follows from §2 that every automorphism of G is induced
by an automorphism of the free group of rank p. In all other cases the
corresponding result follows by applying the Nielsen reduction method in
amalgamated free products together with Theorem 2. 3 and [25, Theorem 1]

To summarise:

Theorem 3.2. If G has rank f, every automorphism of G is

induced by an automorphism of the free group of rank r,

This theorem extends and completes a result of Zieschang [49], who
showed that if G is a discontinuous plane group, every automorphism of

G is induced by an automorphism of the free group of rank p + m.
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The case (b) of Theorem 3.1, where rank G =m - 2, is particularly
interesting. Here there is just one Nielsen equivalence class of genera-
ting systems {xl, e, xm_z} (cf. [10], [34]). If in particular m = 4,
so rank G = 2, it is also true that every automorphism of the free group
of rank 2 induces an automorphism of G [10]. Thus one can naturally
identify Aut G with an epimorphic image of the automorphism group of
the free group of rank 2; i.e. G has a quasifree presentation (cf. [12]).

Further results on the characterisation of minimal generating sys-
tems of G are given in [10], [24], [34] and [39].

§4. A NIELSEN REDUCTION METHOD IN LINEAR GROUPS OVER R

By a theorem of Tits [45], every finitely generated linear group over
a commutative field either has a solvable subgroup of finite index or con-
tains a free subgroup of rank two. For subgroups of SL(2, R) this
theorem can be extended by use of a Nielsen reduction process in linear
groups. In describing this method we restrict ourselves to the case of
two-generator subgroups of SL(2, R). Consider then a subgroup
G={A, B of SL(2, R) with TrA=x, TrB=y and TrAB = z.

It is easy to see that in general

Tr[A, B]:x2+y2+z2-xyz—2.

If Tr[A, B]=2, G is reduciblei.e. A and B (considered as linear
fractional transformations) have at least one common fixed point. If two
of X, y and z vanish then G is isomorphic modulo I to the infinite
dihedral group. In both cases, G contains a solvable subgroup of finite
index.

From now on we suppose Tr[A, B]# 2 and that at most one of
X, y and z vanishes. Then G does not have a solvable subgroup of
finite index. Let EGr be the set of all pairs {U, V] freely equivalent
to {A, B}. Then G=(U, V) and Tr{U, V] = Tr[A, B] so the ternary
form i(x, y, z) = x° + y2 +2° xyz i% invariant by automorphisms of
the free group of rank two.

Let L, = {(TrU, TrV, TrUV)|{U, V] €E;] and

M, = {TrU|{U, V]€E

G for some V € G}. Then M, isa discrete

G
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subset of R, and starting from the given triple (x, y, z) € LG we can

obtain all triples (u, v, w) € L., by repeated application of the following

G
birational transformations:

O1 u=v, VvIu, ww
O2 u=w, Vu, WV

OB:u-’u, V=V, w=uv - w,

Indeed, each automorphism of the free group of rank 2 induces in a
natural way such a birational transformation, since TrRTrS-TrRS=TrRS '
for R, S € SL(2, R). Further, the permutation group H generated by
01, O2 and O3 is isomorphic to PGL(2, Z) and operates discontinuously
on L. (cf. [7], [33], [41]). The proof is essentially based on the follow-
ing simple observation:

If R, S eSL(2, R) with |TrR| =2, then Tr[R, S]= 2.

+
Suppose now, x, y =0 and write E | for the set of pairs {U, V] €E,, with

G G
0 =TrU = TrV = TrUV. Then Eg is non-empty, for if z < 0 we

replace z by xy - z> 0 (replace A by A_l); then apply a permutation
(product in O1 and 02) to suppose 0 = 115 y =2z N

We now introduce an order < on E.. If {U, V}, (R, 8} €E,
set {U, V} < {R, 8§} if TrU + TrV + TrUV < TrR + TrS + TrRS.
Now consider Nielsen transformations from pairs {R, S| € EZ to pairs
{u, v} e EE which are shorter with respect to the ordering <. Since
MG is a discrete subset of R, we arrive after finitely many steps at a
pair {U, V] € Eg minimal with respect to <, i.e. a pair {U, V] eEg
with TrUV™' < 0 (if Tr[A, B]> 2) respectively TrUV = :TrUTrV
(if Tr[A, B] < 2). This Nielsen reduction process now leads in con-

junction with a theorem of Majeed [15] to

Theorem 4.1 [41]. Let G=(A, B) C SL(2, R) with TrA =x,
TrB=y, TrAB =2z and X2 + y2 + 2% - Xyz # 4. Suppose at most one of

X, ¥, z is zero. Then G has a generating system {U, V! such that

(Un, v is a discrete free group of rank 2 for n sufficiently large.

Remark. By applying this Nielsen reduction method we can obtain
further results for groups G ={A, B) C SL(2, R). We have simple
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necessary and sufficient conditions for G to be discrete. We can further
classify discrete groups G =<(A, B) up to conjugacy in GL(2, R)

(ef. [10], [30], [31], [32], [33], [40]). Using the ternary form f(x, y, z) =
x? + y2 + 22 - Xxyz we obtain a description of the Teichmiller space for
certain discrete groups G = (A, B) C SL(2, R) as a real, affine algebraic
set defined over Z on which the group H = PGL(2, Z) generated by

01’ O2 and O3 acts discontinuously. In particular, H acts discon-
tinuously on the set {(x, y, z) €R’*|0< x, y, z and x° +y° +2° - xyz=b}
for b=0 in R; anda fundamental region for H is given by the subset
where 2< x=y=z=3xy (cf. [7], [30], [32], [33]). A general theorem
about the description of Teichmuller space by a real affine algebraic set
defined over Z is given in[7].

This Nielsen reduction process also leads to

Theorem 4.2 (cf. [34]). A non-elementary subgroup of SL(2, R)

is discrete if and only if each of its cyclic subgroups is discrete.

Here a subgroup G of SL(2, R) is said to be elementary if the
commutator of any two elements of infinite order has trace 2.
A proof of this theorem has also been obtained by T. Jgrgensen.
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20 : Chevailey groups over polynomial rings

CHRISTOPHE SOULE

University of Paris VII

Let G be a Chevalley group (scheme) defined over Z, simple
and simply-connected, and A = k[t] the ring of polynomials over a field
k. We shall describe an action of the group T = G(k[t]) on an appro-
priate contractible space, and deduce from that information about the

presentations and the homology of the group T.

1. REDUCTION THEORY ON BUILDINGS

Let G and A be as above, and call

K =k(t) the fraction field of A, G the group G(K),

w the valuation defined on K by w(u/v) =degv - degu, O the
ring of integers for this valuation (0 #A),

T a maximal torus in G, ¢ the set of roots of G with respect to
T, and SC ¢ a set of simple roots,

7 the (affine) Bruhat-Tits building associated to G and w [1],

@ the standard apartment associated to T, ¢ the vertex fixed
by G(0), 2 the 'quartier' with vertex ¢ associated to S, € the funda-
mental chamber containing ¢,

GC SLn an imbedding of G in a special linear group such that T
is diagonal and T = SLn(A) n G,

j: T 7' an injection of 7 into the building 7' of SLn(K), com-
patible with the preceding imbedding, mapping @ into the standard apartment
of 7' and multiplying the distances by a fixed constant (cf. [1], 9-1-19, c)).

The case of SL3 is drawn below:
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Theorem 1. The set @ is a simplicial fundamental domain for

the action of T on 7. In other words, any simplex of 7 is equivalent

by T' toa unique simplex of 2.

Proof. This result, as well as theorems 2, 3 and 4 below, is a
generalisation of theorems of J. P, Serre [11] in the case of SL2 ITd
like also to thank J. Tits for his help in this proof).

1.1 Description of the isotropy group I‘X of avertex x of 2 in T

Since © n A =Kk, one has 1“¢ = G(k).

When x € - {¢}, and if [x[ is the half-line of origin x and
direction &E, one has I‘X =T A" It is enough to prove this for SLn,
since j respects the geodesics. In that case the stabilizer of x in G
is, with the notations of [1] 10-2-8, p. 238,

P = 1g= (gij)/w(gij) + a].(X) -a,(x) =0},

and:
gij =0 if aj(x) - ai(x) <0
w(gi]-)+aj(X)—ai(X)20 if aj(X)-ati(X)2 0

P[X[ = {g= (gi].)
But w(A - {0}) = 0, and this implies the result,

In general, let X, denote the one parameter subgroup associated
to the root a € &, The stabilizer of [x[ in G is the semi-direct
product of

ZX(O) = T(9). (xa(O), a(x)=10, a €d)
with
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UX(K) = (xa(u), uek, wuw=ax)> 0, aecd)
(see [1], 6.1.3.b) and 7.1). Therefore FX = Zx(k)‘ UX(A), where
Z_k) = T(k).(x, (k), a(x) =0)

and U (A) =<xa(u), u ek[t], d° (u) = a(x), a(x) > 0) (cf. [14], p. 114).

1.2 Action of I‘X on the link of x in 7

If LX is this link, we prove that T'_. (LX no)= L. Actually, from
[1], 7-2-7, LX is the spherical Tits building of a quotient EX of Px'
Furthermore, @ n LX is an apartment of this building and I‘X projects
into GX with image the parabolic subgroup associated to the roots which
are zero on Xx; this group admits precisely LX n 2 as fundamental

domain.

1.3 Two distinct points in 2 are not equivalent by T

If two points of & are equivalent under I, two chambers con-
taining them are equivalent under T' (because of 1. 2)).

Two chambers in G are then equivalent under T' and by a trans-
lation 7 in the affine Weyl group W of G (because T' contains repre-
sentatives of the whole linear Weyl group Wo)'

If two points in @ are equivalent under T, they are atthe same distance
from ¢. This can be proved first for SLn, since j multiplies the
distances by a constant. But in that case 1. 3 can be proved directly.

In fact, if G=8L , = (gi].), 7 = diag(t), Tlx=gx=y, x, y €9, then

Tg € Px’ SO
0= witg;) + aj(X) -a;(x), 1=1i, j=n

If w(‘ci )< 0, with j = i0 =1, and gij # 0, we deduce from
0

aio(y) -a(y) = aiO(X) - a;(x) + w(t) - w(tio) (cf. [1], 10-2-5, ii))

that
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O=w(t; J+a, (y)-a,(y)-a, ®)+a,(x) < (a (y)—ai(y))+(aj(X)—ai (x) =0,
0 0 0 ] 0 0
i. e. a contradiction. Thus, w(ti) =0, forevery i, and x =y.
One concludes the general case by the remark that a non-trivial

translation cannot respect the distance to ¢ of all the points of a chamber.

1.4

Toprove 7 =T.G we use 1,2, which proves that T. @ is both

open and closed in the connected (even contractible!) space 7.

2. GENERALIZED AMALGAMS, PRESENTATIONS
2.1 'Amalgams’
Let G be an abstract group, (Gi)iel a family of subgroups of G.

Definition (see [11], [12], [13]). The sum of the groups Gy, 1€,
amalgamated on their intersections (shortly the 'amalgam' of the Gi's)
is the inductive limit G of the system of maps Gy NG >y @, 1) € I°.

In terms of presentations, it means that a presentation of G can
be obtained by taking for generators the union (in G) of sets of generators
of the Gi's, submitted to the relations defining each of these groups (see
[1.2], [13)]).

'Amalgams’' can also be characterized geometrically. Let X be
a simplicial complex acted on by G (on left) in such a way that there
exists a simplicial fundamental domain X' C X (with the same meaning

as in Theorem 1)

Theorem 2. TUnder the above hypothesis, if X' is connected and

X, € X', there exists an exact sequence:

m (X, x) >G> E}—»no(x)-> {1}.

The map on the left is injective whenever X' is simply connected, and

each complex gX' n X', g € G, is connected.
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Sketch of the proof (see also[12]). One first proves that G is
generated by the elements g € G such that gX' n X' is not empty,
with the relations (gh) = g.h whenever ghX' ngX' n X' is not empty.
The theorem is then essentially due to the Macbeath-Weil theorem ([6],
[17]). The injectivity of the map L8 x) ~ G is obtained by looking at the
proof of this theorem: either one describes the universal covering of X
by gluing together the sets gX', or one compares the homotopy type of
X with the one of the nerve of the family of subcomplexes (gX')geG.
q. e d

When G and the Gi's are given, such a space X can be defined
as follows: take the nerve of the set of cosets gGi, iel, geG.

2.2 The group G(k[t]) is an 'amalgam’

We use here the notations of paragraph 1. When 1 C S is a set of

simple roots, let T'. be the group generated by the elements xa(u),

I
where u ek if a eIy (-I), u=0 if a € -(S/1), and u ek[t] if

a €S/L

Theorem 3. The group T = G(k[t]) is the sum of its subgroups I‘I,

I C 8, amalgamated on their intersections.

Proof. Apply Theorems 1 and 2 (with X =7 and X' = 2), and the
fact that PI is the (filtering) union of the groups l"X such that a(x) =0
iff a isin I q.e.d.

In [10], U. Rehmann used this when he proved that, when k is
finite and rkG = 3, the group T' is finitely presented. G. Harder has
achieved in [5] a reduction theory for the action on buildings of groups
over a ring of functions on a curve (defined over a finite field); maybe
this could be used to study the finite presentation problem for this type of

group.

2.3 Other examples of 'amalgams'

(a) Let K be a global field, S a set of finite valuations
of K, OS (resp. © = O¢) the ring of S-integers (resp. integers) in K.
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Let G be as above a Chevalley simple and simply-connected group over
Z.

Theorem 4. The group g(OS) is the 'amalgam' of a finite number

of arithmetic groups over 0. If G= SLn, SLn(OS) is the sum of

ncard 5 copies of SLn(O), amalgamated on their intersections.

Proof, TLet v e€S§, Kv the completion of K with respect to v,
TV the Bruhat-Tits building of E(KV), and X the product of the buildings
Tv’ v € 8. The group E(OS) acts on X, and we shall prove that the

product X' =1I @v of the fundamental affine chambers in Tv is a sim-
v
plicial fundamental domain for this action. This is true for the group

HQ(KV), but the isotropy groups are open in this product, and Q(OS)

v
is dense in it (by the approximation theorem). It then remains to des-

cribe the stabilizers of the vertices: these are arithmetic groups in
general, and copies of SLn(O) when G = SLn. q.e.d.

One can deduce from this theorem explicit presentations of Q(OS),
starting with presentations of the arithmetic groups. The main difficulty
is to find generators for the intersection of two of the groups one amal-
gamates.

(b) If G is a Chevalley group (scheme) as above and A a com-

mutative ring with unit, the Steinberg group St(A) associated to G(A)
is defined by generators xa(u), a €9, u €A, subjected to the relations

xa(u)xa(v) = xa(u +v) and (if rkG = 2)
[Xa(u), xb(v)]z.H. Xia+jb(ci ia bule) @a+b=#0,1i j> 0),
1’ ] yJ b

where the C's are integral constants of G. This shows easily that
St(A) is the 'amalgam' of the unipotent radical of the parabolic subgroups

of G(A) containing the standard torus (see [2] for the quasi-split case).

The Theorem 2 is then an interpretation of the definition of algebraic
K-theory given by Volodin and Wagoner (see [15]). The exact sequence
considered there gives (after stabilisation) the well-known exact sequence

below:
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{1} ->K2(A) - St(A) = GL(A) ->K1(A) - {1}.

The analogue of this exists for the topological K-theory of a local ring [16].

3. HOMOLOGY

The notations are the ones of paragraph 1. We try to give an
'unstable homological analogue' of the homotopy invariance of algebraic
K-theory: K, (k[t]) = K (k).

Theorem 5. If the field k has a positive characteristic p, and if

F is a field of coefficients with characteristic prime to p, the map
H,(G(k); F) = H,(G(k[t])); F is an isomorphism.

Proof. The action of G(k[t]) on 7, described in Theorem 1, yields
a classical spectral sequence converging to the homology of G(k[t])

whose first term is the following:

1
E, = © H((T_F),

r .
)8 dim o=r
oC 9

where 1"0 is the isotropy group of the simplex o of 2. The differential
is given by alternative sums of corestrictions. By 1.1, the group I‘cr is
the semi-direct product of a reductive group Zc(k) included in G(k) and
a unipotent group Uo. The latter is obtained by successive extensions

from vector groups on k, i.e. inductive limits of finite p-groups. Thus,

an iterated use of the Hochschild-Serre spéctral sequence will prove that
H,(T, F) ~H,(T_nG), F).

The ordered set of groups 1"0 n G(k), 0 C 9, has a maximal element

I‘p = G(k). Therefore, the second term EE’ s of the spectral sequence,
which can be thought of as the homology of this ordered set in the locally
constant (co)sheaf given by the groups HS(I‘U n G(k), F), is the following:

H(GK)  if r=0

r,s 0 if r#0 q.e.d.
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Theorem 6. If k is a finite field of characteristic p, and
G =SL or Sp, then H_(G(k[t]; Z/pZ) = 0.

. Proof. Let k= Fq with q = pd. We shall first prove that
H'(G(k[t])); Z/pZ) = 0 when 0< i< Inf(n/2, d(p-1)) (resp.
0< i< d(p-1)/2) when G = SLn (resp. Spn). For this we use the
spectral sequence described above in Theorem 5. When ¢ is a cell in
32, a p-Sylow subgroup UET of I‘G is generated by elements xa(u),
with a> 0 apd the degree of u bounded. It is normalized in I‘(7 by
the standard maximal torus T(k) of G(k). So, it is sufficient to prove
that H'(T(k), Hi(U;r Z/pZ))=0, for any ¢ C 9, when i is bounded as
above, Such a resuft can be proved first for GLn as in [3], Prop. 4. 2.
The case of GLn implies the result for SLn by the argument of [4]
Prop. 5, and for Sp by [3], Lemma 4. 3.

Now to prove the theorem one interprets H,(G(k[t])) in terms of

characteristic classes and uses finite extensions of k as in [7] and [3],

q. e. d.

Remarks. Maybe the same result could be proved for the Spin
group too.

D. Quillen [8] proved results similar to Theorems 1, 3 and 5 for
GLn’ using a building different from the Bruhat-Tits one. For GL,

Theorem 6 is announced in [9], from a preprint of Gersten.
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List of problems

Edited by C. T. C. WALL

About sixty problems were suggested at the symposium, and a
preliminary version of this list was circulated late in 1977, I am grateful
for the large number of comments, including solutions of several of the
problems, received from the participants as a result of the circulation,
To avoid confusion, I have adhered to the numbering on the original list.

The problems are arranged (somewhat arbitrarily) in seven groups

Algebraic K-theory

Lengths and presentations
Cohomology and algebraic groups
2-dimensional complexes

Euler characteristics

H oH g QW >

Finiteness conditions

G Group actions.

References are collected at the end of each group.

ALGEBRAIC K-THEORY

A0Q0. The general problem is to obtain some methods of calculation of the
groups K, (ZT), L,(ZT) for infinite groups I, where virtually nothing

is known. Of particular interest is the homomorphism
24(T): h,(BT; K) = K, (2T)

defined by Loday (1976), where h,(-; gz) is the generalised homology
theory associated with the algebraic K-theory of Z.

One may conjecture that X, (), or at least 2 (T} ® @, is an iso-
morphism whenever I’ has type FP, or for some subclass (type FL,
f.p. andtype FL, Poincare duality groups). It follows from results of

Waldhausen (1976) that this property of T' is inherited by amalgamated
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free products. A recent result of Farrell and Hsiang (1978) shows that
for T' a Bieberbach group we have isomorphisms onto Ko’ Kl. Some
other results also are known in low dimensions (Loday, 1976).
Essentially the same remarks apply to L-theory; here a map
analogous to A, (T) has been defined by Ranicki (unpublished), and
Cappell's splitting theorem (1971) gives a result (modulo, on occasion,
2-torsion) for amalgamated free products. Farrell and Hsiang (1978)
likewise applies to L-theory (all dimensions) modulo reservations about

2-torsion (recently resolved).

Al, Find an explicit example of a torsion-free group I for which
f{O(Zl") is nontrivial. Precisely one non-free projective module is known
(Dunwoody, 1972) and that is stably free.

A2, I T is torsion-free, can ZI' have zero-divisors?

A3, Does every finite group with periodic cohomology have a free
resolution of minimum period? I showed (Wall, 1978) that in all cases
twice the cohomology period suffices. The doubtful cases are those with

subgroups

Q(8a; p, 1) =<X; y, t]X4a=Yp=1, t2 =X , t_l}{tzx-l’

lyx=y !l iyt =y

with a> 1 and p> 1 odd. All these have period 4.

Very recently it has been shown by Milgram (1978) that Q(24; p, 1)
does not have a free resolution of period 4 for p=>5, 7 or 11; though
it does if p = 13 (mod 24). '

A4, Can one find a group 7, of order’ N, with periodic cohomology and
r prime to N such that the projective Z7-module (r, =) is stably free

but not free?

A5, The prime graph of a finite group 7 of order N has vertices the
primes p dividing N; p and q are joined by an edge if 7 has an ele-
ment of order pgq. How does the number of components depend on 7?

If 7 is soluble, there are at most 2 components (see Gruenberg's
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article in these proceedings); in all known examples, there are at most

6. Is this the most possible ?

A6. Can one say anything about Whitehead groups of 1-relator groups;
are there any elements besides units? or indeed (in the torsion free

case) any nontrivial units?

A7. Various results in higher algebraic K-theory depend on detailed
cohomological information; e.g. the question whether the classifying
spaces of GLn(C) as topological and as discrete group have the same
cohomology is related to the Lichtenbaum conjectures. More naively,

it is known that
H*(GL_(Z/p%); Z/1) = HX(GL, (Z/p); Z/1)

for p )( l: what happens if p=17?
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and inevitably overlap the above. See particularly Bass (1973) and
Shaneson (1973) and for wider lists to which I have contributed Kato (1975)
and Browder (1976).

H. Bass (1973). Some problems in classical algebraic K-theory, pp. 3-73
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LENGTHS AND PRESENTATIONS

Bl. Let P be a pregroup in the sense of Stallings (1972), U(P) its
universal group, ¢ : U(P) =+ N the natural length function. Does this
satisfy the axioms of Lyndon (1963) (see also (Chiswell, 1976))? Chiswell
states that the result is at least 'nearly true'!

B2, Describe the structure of a group with a real-valued length function

satisfying Lyndon's axioms.

B3. Can every group with an N-valued length function be embedded
(length-preserving) in another such group such that each element is a
product of elements of length one? Yes (Chiswell, 1979).

B4, Which finite groups have presentations with equal numbers of genera-
tors and relations? I wondered if this was related to periodicity of co-
homology. The article by Johnson and Robertson in this volume gives
enough examples to contradict naive guesses, but the property remains
mysterious. One may also ask which finite groups admit cyclic presenta-

tions <X1’ cees xn]r ., rn> where r  is obtained from r_bya

17 k

suitable cyclic permutation of Xis ooey Xpo
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B5. Let (XIR) be a presentation satisfying a small cancellation con-
dition, Does the normal closure of R in the free group (X} have a
basis consisting of conjugates of elements of R? This is true for

Fuchsian groups (Zieschang et al. (1970}, p. 103),

B6. Let (x, ..., xn]rl,
trivial group. Does it follow that r coincides (modulo commutators)

, rn> be a cyclic presentation of the

with some x, or xi_1 ? A negative answer would entail producing a
nontrivial element of the Whitehead group Wh(Z/nZ) which is realised
by the presentation.,

B7. Let P = (x|r(x)), P, = (y|s(y)) be presentations with n genera-
tors and n relators of groups Pl, P2. ‘Define 21 #22 by substitution
as (y]r(s(y))): let this present P. Then P2 is a quotient of P, so if
P is trivial, P2 also is. Does it follow that P1 is trivial too? If P1
has a nontrivial finite dimensional representation (or equivalently, a
proper subgroup of finite index) it follows from the techniques of
Gerstenhaber and Rothaus (1962) that P is not trivial,

B8. Give explicit presentations of interesting arithmetic groups - see
e.g. Swan (1971), Vinberg (1972), Behr and Mennicke (1968), Behr
(1975a, b), Grunewald et al. (1978).

Similarly, find presentations for GLn(R), SLn(R) and En(R) for
interesting rings R, e, g. by adding relations to the Steinberg group
Stn(R), see e.g. Sylvester (1973). Similarly in the presence of a
sesquilinear form, c.f. Sharpe (1972).

B9. A finite graph Y is called O-symmetric if Y is the Cayley graph
of a group presentation 2, and P is the automorphism group of Y,
Classify all trivalent O-symmetric graphs.

For which a, b, ¢ € Z is the Cayley graph of

(R, §|R? = RSRSRSC = 1)
O-symmetric?

B10. Is the Burau representation of the braid group on n = 4 strings

373



faithful? See section 3.3 of Birman (1975) for definitions and detailed

discussion, Related problems are listed in the appendix to that book.

Bll. Suppose the finitely generated group G expressed in two ways as
the fundamental group of a minimal graph of groups, such that each edge
group is finite and each vertex group has at most one end. Is there a
bijection between edges of the two graphs such that corresponding edge
groups are conjugate? See Lemma 7, 6 of the article by Scott and Wall

in this volume.

Bl2. Let G be finite and g its (integral) augmentation ideal. Call a
subgroup H of G isolated (in G)if (i) h"'Hg nH equals 1 or H for
every g € G and (ii) the centraliser in G of every nontrivial element of
H is contained in H.

If g decomposes, does G possess an isolated subgroup? This is
true if G is soluble. The converse is true generally (Gruenberg et al.
(1975)).

It is known that if g decomposes, then the prime graph of G is
disconnected (cf. problem A5). Is the converse true?

If the prime graph of G is not connected, does G possess an

isolated subgroup ?

B13. Let E=G +H andlet u, g, denote the augmentation ideals of
E, G, H. If 1 isa right ideal of ZE, let dE(I) denote the minimum
number of generators of I as right ideal. Assuming G, H finitely

generated, is it true that

d (1) = dp(6F) + dp(FE)?

(This would be a module analogue of the equality d(E) = d(G) + d(H) which
follows from the GruSko-Neumann theorem. )
In connexion with the above, given any group E and a finitely genera-

ted subgroup G, when can we expect dG(g) to equal dE(gE)‘?

Bl4, With E =G x H, as in B13, let E* be the 'Cartesian subgroup' of
E (i.e. the kernel of E = G X H). What is dE(E *), the minimum number

of generators of E* as normal subgroup of E? (An obvious upper bound
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is d(G)d(H).)

B15. Find examples of a group G, preferably finite, with a free
presentation F/R =~ G such that dF(R) > dG(R/R').
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COHOMOLOGY AND ALGEBRAIC GROUPS

Cl. Let T =(a, t|t"'a’t =a’). This is the famous non-hopfian
1-relator group of Baumslag and Solitar (1962), It is an HNN group with
chI‘ = 2, a duality group, but not residually finite.

Write T, =[T', 1"0] for the first, T', = [T, T ] for the second
commutator subgroup and T = 1"0/I‘2 for the metabelian quotient. Since
T, is the normal closure of (a), one can identify I' /T') with Z’[%];

T' is the obvious HNN group. The (corrected) problem was: is

c.d. T'=2 or =3? This has been answered by D, Gildenhuys, using
the result of Bieri and Strebel (1978) that T' is not finitely presented. In
fact, c.d. T =3 (Math, Zeits, 166 (1979), 21-5).

For any soluble torsion-free group TI', the homological dimension
equals the Hirsch number h(T) and c.d. T equals either h(T') or
1 + h(T'): the former for T' of type FP. In this (perhaps typical)

example, we now have the second alternative.

C2. Given a short exact sequence I'' =T = T" of groups of type FP,
is it true that c.d. "=c.d. T'' + c.d. T"? The answer is yes (Feldman)
for groups of type FP over a field: see Bieri (1976) p. 70. Over Z, if

m=c.d. ZF', n=c,d. Z1“" we have

+ .
1N, zr) 2 1™T; 2T) ®, H(rr; zrn).

C3. Isevery group I" with c.d. T' =2 the fundamental group of a
graph of free groups ? An alternative (perhaps more plausible) version
is: let @1 0 denote the class of free groups and (inductively) e n the

)

ki
class of groups G=H *FK or H *p with H, K in el,n_l and F
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free. Let 62 = U:—O @1 o Does every (f.g.)group T with c¢.d. T' =2
- ’
belong to @2 ?
The answer to C1 adds credence to this conjecture.

C4. Suppose v.c.d. T' < = (and, if necessary, that T' has type VFP),
Is the Farrell (1977) cohomology ﬁ*(r) annihilated by the 1. ¢. m. of
orders of finite subgroups of T"'? See Ken Brown's paper in these pro-

ceedings for background.

C5. Is the dualising module of a duality group always Z-free? More
generally, is H*(I', 2T') Z-free for any T' of type FP? The stronger

result would decide C2.
Cé6. Is there a simple Poincaré duality group ?

C7. Bousfield's (1977) @-completion éQ of a group G may be defined
as follows. Write G(o) =G, G(n+1) =[G, G(n)] for the lower central
series, and (G/G(n))“ for the Mal'cer (1949) completion of the nilpotent
group G/G(n). Then take the inverse limit GQz 1}__mn (G/G(n)) . For
F finitely generated free, does HZ(FQ; Q) vanish? This is important
for the theory of such completions. There is an analogous question with
Z/n replacing Q.

C8. A simplicial complex is said to have the property CM if both it,
and the link of any vertex in it, are homotopy equivalent to bouquets of
spheres of constant dimension. Now let T be of type VFL, ép(I‘) the
partly ordered set of elementary abelian p-subgroups of I', under in-
clusion, Are the following two concepts related? (i) The realisation
]ép(l")l isa CM complex. (ii) H*(I'; Z/p) is a Cohen-Macaulay ring,

C9. Let G be a quasi-simple algebraic group over @, é(Q) the pro-
finite completion of G(®) (here the topology is defined by arithmetic sub-
groups), G(Q) the adelic completion (topology of congruence subgroups),
CS(G) = Ker(é(Q) - G(@)). Compute CS(G). This is the well-known con-
gruence subgroup problem.

The answer is known (Bass et al. (1967)) for SLn and Spn of a
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commutative global field K; this has been extended (Matsumoto, 1969) to
all split groups, (Kneser, 1969) to the orthogonal group of any quadratic
form of Witt index = 2 over K, and (Bak, 1978: see Theorem 1. 79} to
the unitary group of a hyperbolic hermitian form of rank = 4 defined by
a quadratic extension L/K. Raghunathan (1976) has shown that C°(G)

is finite when Q-rank G = 2,

In all cases so far, if G has field of definition K, and index (in
some sense) = 2, CS(G) is trivial if K is not totally complex; other-
wise is isomorphic to the group p(K) of roots of unity in K. One may
conjecture that this holds in general. The key outstanding cases are

linear etc. groups over division rings.

C10. Let G be a semisimple (or reductive) algebraic group over Q.
I originally asked: are maximal p-subgroups of G(Q) conjugate? This
was proved for GL (Q) by Volva;cev (1963). However, Serre points out
that though Sylow 3- subgroups of SL ( ) (of order 3) are conjugate in
( ), A and g Ag are conJugate in SL (Q) only if *det g is of

the form a + 3b (a, b €®). Thus there are infinitely many classes,

The problem of obtaining a better understanding remains. Often
(e.g. in GL (Q) with p # 2) we can find a prime ! #p such that a
maximal p- subgroup of G(®) is also a maximal p-subgroup of G(Q ),
where Q denotes the field of Z-adic numbers. It is then contained in a
maximal compact subgroup (for which Sylow theory holds), and though
these are not all conjugate, they fall into a finite number of classes
(Bruhat and Tits (1972) p. 65).

Indeed if G is reductive over Q , it can be shown that finite sub-
groups of G Qp) fall into a finite number of conjugacy classes. Thus if
G is reductive over ®, the finite subgroups of G(Q®) are finite in number

modulo conjugation by any G(@p).
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2-DIMENSIONAL COMPLEXES

It is easy to find unsolved problems here. Most of them are genera-
ted by the following.

If the connected, finite 2-complexes K and K' are equivalent by
2- and 3-moves, then they are simple homotopy equivalent; this in turn
implies homotopy equivalence, and hence that we have isomorphic funda-

mental groups and equal Euler characteristics. Which of these implications
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can be reversed? - or more precisely, under what conditions can the
various implications be reversed? The first is unknown (Andrews and
Curtis (1965) conjecture) even in the contractible case.

We can also generalise the question by allowing K, K' to have a
common subcomplex L, with dim(K - L) =2, dim(K' - L)} = 2, and
working relative to L throughout. In view of the close connexion between
group presentations and 2-complexes, it is not too difficult to translate
these questions into group theoretic terms.

Along with these 'uniqueness' questions are companion 'existence’
ones: here (K, L) is given (satisfying some conditions) and we seek
(K', L), equivalent to (K, L) in an appropriate sense, and with
dim(K' - L) = 2. A number of positive results have appeared recently
on 'stabilising' by replacing K, K' by bouquets with copies of SZ.

We now list some of the more interesting questions explicitly.

D1. Suppose Y dominated by a connected 2-complex. Is Y homotopy
equivalent to a 2-complex? For Y satisfying condition F2 of Wall
(1965) this seems improbable. Ratcliffe has shown (unpublished) that

if G= ﬂl(Y) is f. p., and over the group ring ZG 'big projective
modules are free', then if Y does not satisfy F2 it is indeed homotopy
equivalent to the bouquet of infinitely many 2-spheres with X, X any
finite 2-complex with fundamental group G.

D2, In Wall (1965) a construction was given for a space X dominated by
a finite 2-complex but not homotopy equivalent to one: X can be taken as
a 3-dimensional CW-complex. One cannot take X to be a compact ANR
(West, 1977), but can X be a 2-dimensional compactum? The construc-

tions of Ferry (1978) show that X can be a 3-dimensional compactum,

D3. Now suppose Y dominated by a finite connected 2-complex and that
the Wall obstruction vanishes, Does it follow that Y is homotopy equiva-
lent to a finite 2-complex (say for short, Y is finite)? It has been shown
by several people (Dyer (1975), Cohen (1977), Ratcliffe, Schafer) that some
bouquet of Y and a finite number of 2-spheres is finite. Also (Dyer,

1975) if ™ (Y) is finite abelian and x(Y) not minimal, then Y is finite,

The same conclusion follows for any finite group m (Y) from Browning
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(1978) and Dyer (1978a). Also, Y is always finite if 771(Y) is cyclic
(Dyer (1975) or Cockroft et al, (1975)), free (follows from Wall (1965)
using Stallings (1968)) or the product of two finite eyclic groups (Dyer,
1978b).

J. Cohen conjectures that Y v s° is always finite, and that Y is
if either ™ (Y) is infinite or 772(Y) a Swan module over an(Y) (a
Swan module can be generated by k elements if each of its localisations

can).

D4, Does c.d. T =2 imply the existence of a 2-dimensional K(T, 1)?
(Conjecture of Eilenberg and Ganea (1957).) This is a special case of D1;
there is also a finite version as in D3, The problem can be formulated
in terms of the relation module of a presentation, It would be settled by
an affirmative answer to C3. One approach is to try to prove I decom-
posable as free product (or HNN group) with amalgamated free sub-
group, and arrive eventually at simpler (hopefully free) indecomposable

groups,

D5, For T anf.p. group, a I'-complex is a connected finite 2-com-
plex with fundamental group I'. Call the I'-complex X a root if it is

not homotopy equivalent to Y Vv S2 for some I'-complex Y, and set
level(X) = x (X) - min{x(Y) : Y a I'-complex |,

At what levels can roots occur? For T finite, roots only occur at level
O (Browning, 1978). The example of Dunwoody (1972) (see references
for A), with T the trefoil group, gives a root of level 1. For further
discussion, see Dyer's article in these proceedings.

D6. Are homotopy equivalent finite 2-complexes always simply homotopy
equivalent? This holds for cyclic groups (Dyer and Sieradski, 1973)
Cockroft and Moss, 1975); indeed, for all finite abelian 7 with

SKl(Zﬂ) =0 (Dyer, 1978b); also stably, and if 7 is finite, at most two
2-spheres are needed.
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D7. Is a subcomplex of an aspherical 2-complex aspherical? (Whitehead
conjecture, ) Equivalently, can one ever kill LA of a 2-complex by
attaching 2-cells? Partial results have been obtained by Cockroft (1954},
Adams (1955) and Cohen (1978), in the case when the fundamental group

of the subcomplex has no perfect subgroup,

D8. Characterise the set of elements x € Wh(I') which are torsions of
inclusions i:X CY where i is a homotopy equivalence and dim(Y-X)=2.
Is this set a subgroup? Results of Rothaus (1977) show that for T' di-
hedral we may not obtain all elements of Wh(I'). A negative answer to

problem B6 would give a non-trivial example here.
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EULER CHARACTERISTICS

In the following, I will use the notation from Bass' article in this
volume: Thus if M is projective, or of type FP as A-module, M
denotes the trace of the identity map of M; when A =KkI' this may be
regarded as a k-valued function on conjugacy classes of I'. In particular,
if A=kI and M =k, sothat T is of type FP over k (I will write
FPk)’ k
istic; E(xr) for the sum over conjugacy classes, or homological Euler

write xlr(, = Xp for r and x(T)= XI(l) for the Euler character-

characteristic.

E1l. Here we repeat problems from 4. 4 and 7. 6 of Bass' article. Suppose
first kCC suchthat knQ =%, and P f.g. projective over KkI.

Weak conjecture: rP(l) = ZrP(T)

Strong conjecture: rP(s) =0 forall s =1,

For T of type FPZ’ the weak conjecture implies that x(T') = Z(Xr)
the strong conjecture that XI‘(S) =0 forall s=#1,

For T of type FPQ, it is further conjectured that XI‘(S) =0 for s
of infinite order; that there are only finitely many classes of elements of
finite order; and that if s has finite order and centraliser Zr(s) of
type FPQ, then XF(S) = x(Zl.(s)).

The conjectures in the preceding paragraph have been established by
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Ken Brown (1978), but under rather complicated hypotheses. These in-
clude, for example, the case of arithmetic groups, or of S-arithmetic
groups in reductive algebraic groups. Things would simplify consider-

ably if the strong conjecture could be proved in general.

E2. For T of type FPQ
for all s of finite order in I'? The answer is no, and this follows from

with XI‘(l) # 0, does it follow that XF(S) #0

(Brown, 1978): a particular counterexample (of type szn(A)) is given in
(Brown, 1974).

E3. If pn divides the denominator of Xx(I'), must I" have a subgroup
of order pn? An affirmative answer to this, too, is given by (Brown,
1978) provided, for example, that every finite p-subgroup F of T has
normaliser NI‘(F) of type VFP.

E4, Canone finda group I' such that x(I') has denominator m> 1,

but all subgroups of finite index in T" have index prime to m?

E5. Does a nontrivial torsion-free group of type FPQ necessarily have

infinitely many conjugacy classes?

E6. Suppose I' of type FP over ]Fp. Does it follow that
(i) T has type FP_?

Q
(ii) x? takes p-integral values? F
(iii) The mod p m&meofx?isxrp?

E7. Give a formula for Xl"(l) - E(xr) for T' of type FPQ. Such a
formula, under suitable hypotheses, follows from the results of Brown
(1978).

E8., J. Cohen has recently proposed a generalised definition of Euler
characteristic. Can this be used to weaken the finiteness hypotheses in

any of the results of Bass and Brown?

E9. In the early circulation, I reproduced conjectures 1 and 2 from
Stallings (1974): in fact these (when precisely formulated) are largely
known (see Bass' article). The following remains open: suppose T of
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type FPK, T'' normal in K with H_(T''; K} f.g. and c.d. K(1"/1"')< oo,
Then is T'/T' of type FPK‘?

As to Stallings' further questions, Conjectures 3a and 3b reappear
as E3 and E6 above; Problem 2a as E4, 2b as part of E1 and Problem 3
is solved by work of Bass and Brown. Problem 1 asks for 'reasonable

conditions' for property FPK to be hereditary for normal subgroups.

E10. Let ¢(T') be a function on some class of groups TI', such that for
a subgroup I'' C T' of index n, ¢(T"') = n¢(T). Define

5(1") = inf{n_l(j)(l'"): T' a subgroup of finite index n in T} .

Then 5(1“') = nE(F), and 5 is a generalised Euler characteristic,
Examples: g(T') = minimum number of generators for T', R(T") =
minimum (over all presentations) of total of lengths of relators.

Very little is known about g(I') and R(T): a first problem is to
make some nontrivial calculations. Also, if M, N are hyperbolic 3-
manifolds and f : M =+ N has degree d, is f{(ﬂl(M)) = ’d’f{(nl (N))?

This problem is related to work of Thurston (1978), particularly
to §6.

E11., Suppose T of type VFP and s of finite order in T'. Does it
follow that the centraliser ZI‘(S) also has type VFP? An affirmative
answer, with the results of Brown (1978), would imply that groups of
type VFP have only finitely many conjugacy classes of elements of

finite order.
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FINITENESS CONDITIONS

Perhaps the most interesting questions concern relations between

different types of finiteness condition. These are in fact very diverse.

Fl. 1Is every countable (not necessarily f.g.) torsion free group with
infinitely many ends a free product? Does every uncountable locally
finite group have 1 end? See the article by Scott and Wall for background.

F2, Which 1-relator groups are (nontrivial) amalgamated free products?

F3, We say that an f, g. group with at most one end is O-accessible, and
that a group I' is n-accessible if T'=A *p O A *F B with F finite
and A (and B) (n - 1)-accessible, Is every f,g, group I' n-accessible
for some n? It was shown by Dunwoody (1978) that equivalent conditions
are

(i) H'(T;RT) is f.g. as RT-module, or

(ii) 2 ®ZFH1(1"; ZT') is f,g. as abelian group.

F4, Does every discrete f, g. subgroup of a Lie group G have a torsion-
free subgroup of finite index? The answer is no: counterexamples have
been given by Deligne (1978), Millson and Serre. One may ask instead:
does every connected semisimple Lie group G have a torsion-free sub-
group T' with G/T' compact? This is known (Borel, 1963) if G has a

faithful linear representation.

F5, Does every small cancellation group have a torsion-free subgroup
of finite index (it will then be of type VFP)? Is it residually finite? For
1-relator groups, the first conclusion holds, by Fischer et al. (1972).

F6. Are all duality groups residually finite? Bieri points out that the
group 1"0 defined in C1 gives a counterexample. Indeed, Thurston can
construct Poincaré duality groups which are not residually finite, One
may ask in contrast (C6) whether there exists a simple Poincaré duality
group.

I also asked when residual finiteness is inherited by amalgamated
B, A

free products A * This certainly does not hold in general.

C *C.
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The best (or the only?) positive result is when C is finite (Baumslag,
1963),

F7. In an opposite direction, one may seek conditions implying that
elements of finite order, or finite subgroups, fall into finitely many
conjugacy classes. Does this hold when v.c.d. T < ©? when T is of
type VFP? when I' is of type FPQ?

The paper of Brown (1978) (see references for E) yields the con-
clusion when v.c.d.I' < « and for each s € I' of finite order, ZF(S)
has a torsion-free normal subgroup of finite index with finitely generated
integral homology. Another (stringent) sufficient condition has been given
by Howie and Schneebeli (preprint, ETH, Nov. 19 78).

F8. 1Is every group of type FPZ also of type FL? Does this at least
hold for duality (or Poincaré duality) groups? Or under the assumption
that the group has type VFL?

F9. Does every group of type FPQ have a finite series with quotients
of type FPZ or finite? The answer is negative (Bieri). For suppose
(i) T of type FPQ, with c.d. QI‘ =2,
(ii) T has no proper subgroup of finite index,
(iii) T is not torsion-free.
Then T * ' has no proper normal subgroup which is finite (it is a free
product) or of finite index (I" has none): hence (Bieri, 1978) if T is a
proper normal subgroup with quotient I'", c. d. QP" =1, By Dunwoody
(1978), T'" has a free subgroup of finite index: a contradiction,
Examples of T' satisfying the conditions are given by Schneebeli
(1978) (see the group G given for Theorem 1). Bieri remarks that one
can also find a duality group as counterexample.
For the next three problems, we say that I' has type FPn (n = )
if Z has a ZT'-projective resolution C, such that Ck is finitely genera-

ted for k = n.

F10. Is every group of type FP2 ("almost finitely presented') necessarily

finitely presented? Does this at least hold for Poincaré duality groups ?
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Fll. Is every torsion-free group of type FP _ also of type FP? Or, on
the other hand, can one find an FP _ group with a non-finitely generated

free abelian subgroup?

F12. Let C be a complete curve over a finite field, with function field E,

S aset of n points of C, G a simple algebraic group over E with

E-rank k. Is it true that any S-arithmetic subgroup of G(E) is virtually
° ' . .

of type FPk+n-2 but not of type FPk+n-1 ? See Behr's article in these

proceedings for known results in this direction.

F13. Let T' be an f.g. group, with a faithful finite-dimensional linear
representation, such that the character of each finite-dimensional repre-
sentation p takes values integral over Z. Does it follow that T' is an
arithmetic group? As a first step, do the images p(I') have Zariski

closures of bounded dimension?

F14., Call a group coherent if every finitely generated subgroup is finitely
presented. For example, this holds trivially for abelian groups, and
(Scott, 1973) for fundamental groups of 3-manifolds. Are the following

coherent?
(@)  SL_(Z[1/p]), (o) SL,(2),
(c) r *A T'" where Iy T'" are free and A has finite index in each.

See Serre (1974) as an earlier reference, and for the observations
that SL4(Z), SLZ(Z[I/pq]) are not coherent, S. M. Gersten (preprint,
Utah, May 1979) gives a negative answer to (c).

F15. Are small cancellation groups - or their group rings - coherent?
Serre points out that the product of two free groups of rank 2 has presenta-

tion

1 -1 -1,-1 1 -1

(x, 9, 2, tleex 2 = xtx M =gy e =ty T = 1)

satisfying C(4), T{4) of Lyndon and Schupp (1977), p. 240, so is a small

cancellation group. On the other hand, it is not coherent,

F16. Let T be a Poincaré duality group of dimension = 3, Is the

'fundamental group at infinity' of I' necessarily trivial? This is known in
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many cases, e.g. if I' has an f.p. normal subgroup I'' of infinite
index and either T'' or I'/T"' has one end. In dimensions =5 it is
equivalent to having the universa! cover of a compact K(I', 1) manifold
homeomorphic to euclidean space. See Johnson (1974, 1975), Lee and
Raymond (1975),

F17. Are there any groups, other than finite extensions of f. g. nilpotent
groups, with polynomial growth? See Milnor (1968) and Wolf (1968) for

background.

F18. Let F be a finitely generated free group, I" its automorphism
group or outer automorphism group. Is vchI' < =? This holds if F
is the fundamental group of a closed surface, using the action on

Teichmiller space.

F19. A group T, nilpotent of class n, is terminal if there is no group

T', nilpotent of class (n+ 1), with T = I"/I"En) (notation as in C7).
Evans (1968) gave a homological criterion for terminality, Can one find
similar criteria for the following?

(a) there exists a terminal T'' of some class m > n with T = I"/I"m)
(o) there is a residually nilpotent (but not nilpotent) group I'" with
LTy,
(c) forany m> n there exists I'' of class m with T' = I"/I‘zm).
F20. Let T be an f.g. group with a faithful finite dimensional repre-
sentation over C. Define tr. deg I' to be the least transcendence degree
over @ of a subfield F of € over which T' has a faithful representa-

tion. Interpret tr. deg I' group theoretically. Is it true that

tr. deg T = max{tr, deg I" : T' C T solvable} ?
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GROUP ACTIONS

A key general problem is to relate group cohomology properties to

existence of group actions. Of particular interest here are

()

If 7 is finite, with periodic cohomology, can it act freely on a
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sphere? Of dimension one less than the period? The answers here are
essentially known: see Madsen et al, (1976), Wall (1978); also under A2.
(o) If c.d.T'< = can I' act freely and properly on euclidean space?
Yes (Wall, 1970). Ifalso I' is a Poincaré duality group, is there such an
action with compact quotient? This can be broken up into further questions
see G2.

(¢) One can formulate common generalisations of (a) and (b): see e.g.
G4,

Gl. Let I'' be a subgroup of finite index in I', and suppose given a
free, proper action of T'' on R" with compact quotient. Does the action
necessarily extend to one of I'? A slightly less general result with n =2
was proved by Nielsen long ago. ‘

In the case when T'' is a Mostow-Wang group (extension of a f. g,
torsion free nilpotent group by a f. g. free abelian group) and the action
is standard (induced by embedding in a Lie group), the conjecture was

proved by Auslander and Johnson (1976).

G2, Is every Poincaré duality group I' the fundamental group of a
closed K(T', 1) manifold? Smooth manifold? Manifold unique up to homeo
morphism? (It will not be unique up to diffeomorphism. )

In the surgery approach one needs to show first that T" is f, p.
(F10) and of type FL (F8), then that there exists a normal invariant -
K+3(r. 7/9), g+ . z(z))’
KO*(K(T', 1)) ® Z[%] vanish - and then study the surgery obstruction
(Problem AQ). If the obstructions do not vanish, what are they? Ina

i. e. that certain obstructions in H”

practical attempt at making progress one will place further restrictions
on I' -e.g. T an extension of T''" by I'" where suitable manifolds
exist for T' and I'", or for T'" with T'" finite (Gl). The best results
to date are those of Farrell and Hsiang (1978) (see references for A).

G3. Suppose T' has a series whose quotients are fundamental groups
of closed, orientable surfaces. Is I the fundamental group of a non-
singular projective (complex algebraic) and aspherical variety ? Johnson
(1978) has shown that this is virtually true.
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G4. Suppose I' countable, vedT' finite, and the Farrell cohomology of

I" periodic. Is there a free proper action of I' on some product
s* xR"?

G5. Let G be a finite complex reflection group acting on V, X the
union of the reflection hyperplanes. Compute m (V - X), and decide
whether V - X isa K(w, 1). For the complexification of a real reflec-
tion group, these were answered by Brieskorn(1971) and Deligne (1972).
The case dim V = 2 was analysed by Bannai (1976): she computed the
groups, and gave equations from which one can deduce easily that V - X
is a K(m, 1). The imprimitive case is also not difficult. As asphericity
is inherited by products, one need only consider irreducible groups.
There remain cases 24-27, 29, 31-34 of the list of Shephard and Todd
(1954).

G6., Let ved I =n, Is there a contractible n-complex on which I' acts

properly ?

G7. Suppose H,(X;Z) f.g. and dim X < «, and that I' is a torsion
free group acting properly on X with X/T' compact. Does it follow that

I" has finite cohomological dimension?

G8. Let T be a torsion free group acting differentiably (Cl) on Sn,
fixing a point P and acting properly on the complement of P, Must T
be a Bieberbach group? See Kulkarni (1977) for background.

G9. Let G be an algebraic group acting on an algebraic variety X (all
over R), T' a discrete Zariski-dense subgroup such that the action of T

is proper. The original question was: must the action of G be proper ?
(this holds for unipotent groups). Both Serre and Kulkarni gave counter-
examples: the simplest is G = Gm X Gm acting on Gm (the multiplicativ
group of nonzero reals) by the second projection; I generated by (2, 3).
The following remains open. Can one find a simple Lie group G acting

on a locally compact Hausdorff space X, anda subgroup I' of G acting
properly discontinuously on X with I'\X compact, such that there is no
closed subgroup H of G containing T, with nO(H) finite, which acts

properly on X?
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G10. Is there a finite CW complex K such that nn(K) vanishes for

n=n but K is nota K(m, 1)? Is there one with n = 37
G1l1., For any manifold W, with dim W = 5, characterise the set
s = {nl(M) : M a manifold, ¢ : M =W of degree 1}.

If there is a split epimorphism G — m W), Ge § If Ge g, then for
any ﬂl(W)-module A, HI(G; A)-»Hl(ﬂl(W);A) is a split epimorphism.

G12. Find an analogue of Stallings' structure theorem for pairs (T', T'")
with e(I) =1 but e(T, I'') =2, The example given in Chapter 8 of the
article by Scott and Wall in this volume should be noted. Here A and C
are infinite f. g. simple groups and G = A xC. One may now take
T=A*C)XC, T"=CXC: then e(T)=1, e(T, ") =e(G, C) ==
(Lemma 8, 2iii, loc. cit. ) but there is no splitting.

G13. Does there exist a closed aspherical 4-manifold with negative Euler

characteristic ?

Gl4. Can one find a connected manifold M, homotopy equivalent to a
1-complex (with negative Euler characteristic), and a proper free action

of a discrete group on M with compact quotient?
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